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Abstract

Researchers intending to identify the unique characteristics 
of dyscalculia rely upon the problematic and imprecise 
proxy of low mathematics achievement.  Although detailed 
case studies of adults with dyscalculia have offered 
insight into its characteristics, we do not yet know if these 
characteristics are unique to dyscalculia and could be used 
to screen younger students for these understandings.  To 
address this, we designed a group-administered written 
assessment based on the unconventional understandings 
found in adults with dyscalculia to investigate whether 
these understandings are atypical.  In study 1, we assessed 
390 grade 6-8 students to investigate the prevalence of 
these understandings. In study 2, we assessed 80 grade 6-8 
students and recruited three students who demonstrated 
high levels of unconventional understandings.  We collected 
additional assessment data and determined that all three 
students met stringent clinical dyscalculia criteria.  These 
studies provide a proof-of-concept for designing dyscalculia 
screeners based on the characteristics identified in adults 
with dyscalculia.

Introduction

Dyscalculia is a cognitive difference in numerical 
processing that results in persistent and significant 

problems learning even the most basic mathematics 
(Butterworth, 2005; Mussolin et al., 2010). It is estimated 
that approximately 6-8% of school-aged children have 
dyscalculia, also referred to as mathematics learning 
disability1 (Gross-Tsur et al., 1996; Shalev, 2007). Unfortunately, 
research on dyscalculia has been hindered because of 
the lack of a validated and reliable assessment to identify 
students with dyscalculia (e.g., Geary, 2004; Mazzocco, 
2007; Price & Ansari, 2013). Researchers currently identify 
students with this disability by administering a standardized 
achievement test and selecting a cutoff threshold, below 
which students are considered to have dyscalculia2 . There 
is great variability in the assessments used and the cutoffs 
selected (Lewis & Fisher., 2016; Price & Ansari, 2013) suggesting 
that researchers may not be studying one common 
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phenomenon. Of greater concern is the use of low 
achievement as a proxy for dyscalculia because 
of the myriad reasons that students may perform 
at a “low” level on a test.  The current identification 
approach used by researchers cannot differentiate 
low achievement due to dyscalculia from low 
achievement due to social, affective, environmental, 
or instructional factors. Indeed, the use of low 
achievement to identify students with dyscalculia 
has resulted in the over-representation of students of 
color, non-native english speakers, and students from 
low SES backgrounds in the dyscalculic group (Hanich 
et al., 2001, e.g., Compton et al., 2012). The findings 
of studies relying upon this kind of identification 
approach may reflect characteristics of low 
mathematics achievement rather than dyscalculia 
per se. This fundamentally limits the validity of these 
findings and the field’s efforts to delineate the unique 
characteristics of this disability. 

Although students with dyscalculia often do have 
low mathematics achievement, researchers need 
a more precise way of identifying students with this 
disability.  The Diagnostic Statistical Manual, Fifth 
Edition (American Psychiatric Association, 2013; 
DSM-5) requires that environmental, economic, and 
instructional factors are ruled out before a dyscalculia 
diagnosis.  Furthermore, the DSM-5 recommends a 
stricter low achievement criterion – the 7th percentile 
rather than the more commonly used 25th percentile 
(see Lewis & Fisher, 2016 for a review). Unfortunately, 
research on dyscalculia has not moved to adopt these 
more stringent criteria. This may be partially due to 
the fact that to allow for statistical comparisons, 
researchers must ensure that a sufficient number of 
students meet the study’s dyscalculia criteria (e.g., 
Geary et al., 2000). This may also be due to the fact 
that differentiating cognitive and non-cognitive 
causes of low achievement is time consuming, 
methodologically challenging, and often requires 
longitudinal data collection (e.g., Mazzocco & Myers, 
2003). 

To address the need for a dyscalculia screener that 
does not rely upon low achievement, Butterworth 
(2003) developed a Dyscalculia Screener.  This 
screener measures the student’s speed and accuracy 
on simple arithmetic and rapid quantity comparisons 
thought to be associated with number sense 
(Dehaene, 2011).  Unfortunately, researchers have 
found that this assessment misidentifies students 
(both false positives and false negatives) based on 
longitudinal data (Gifford & Rockliffe, 2012; Messenger 
et al., 2007) and therefore it has not been used in 
research on dyscalculia.  

Because the characteristics of dyscalculia are not 
yet understood, it remains unclear what measures a 
dyscalculia assessment should contain (Price & Ansari, 

2013). As researchers attempt to identify and define 
the core characteristics of this disability (Butterworth, 
2005), they are doing so with the imprecise criterion 
of low mathematics achievement.  Reliance upon 
the problematic proxy of low achievement leads to 
“findings that are difficult to interpret, replicate, and 
generalize” (Lyon, 1995, p. 7). We argue that accurate 
identification of students with dyscalculia is the 
central challenge in this field.

To make progress in understanding the unique 
characteristics of dyscalculia and improve      
identification methods, researchers must take a 
radically different approach.  Rather than starting 
with large samples of students identified with the 
imprecise proxy of low achievement, it may be more 
advantageous to start with small samples of extreme 
cases, as has been productive in defining other 
disabilities. By “extreme cases,” we mean instances 
in which an individual’s physiology or behavior is 
not aligned with structural or societal expectations 
and thus it appears to warrant categorization and 
classification3. Detailed study of extreme cases has 
been essential to identify the defining characteristics 
of other disability categories, including attention deficit 
hyperactive disorder (Lange et al., 2010), autism (Wolff, 
2004; Verhoeff, 2013) and dyslexia (Duane, 1979).  For 
each of these disabilities, early clinical identification 
of extreme cases led to defining characteristics of the 
disability that were used to identify and further refine 
the definition (e.g., Verhoeff, 2013).  For dyscalculia, 
extreme cases could be adults with a long history of 
significant and pervasive issues with math (e.g., Mejias 
et al., 2012), who continue to struggle with arithmetic 
despite sufficient educational opportunities. Detailed 
analyses of these kinds of extreme cases can allow 
researchers to identify characteristic patterns of 
understandings evident in individuals with dyscalculia. 
Longitudinal studies have suggested that the 
difficulties experienced by students with dyscalculia 
persist over years (e.g., Lewis, 2014; 2017; Mazzocco et 
al., 2013), suggesting what is learned from adults with 
dyscalculia could inform investigations with younger 
students. 

In this paper we draw upon characteristics identified 
in adults with dyscalculia in Lewis's (2014) case study 
work and design a pencil-and-paper assessment 
to investigate whether it is possible to identify these 
understandings in younger students on a group 
administered written assessment. We designed the 
written assessment based upon the Lewis (2014) case 
study for several reasons.  First, this is one of the few 
detailed analyses of extreme cases of dyscalculia – 
focusing on basic fraction understanding for two adult 
students.  Second, this study used a multidimensional 
identification approach (see Fletcher et al., 2007) 
which involved ruling out social and environmental 
causes for the students’ low mathematics 
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achievement, in addition to establishing that these 
students did not benefit from 1-on-1 tutoring instruction 
that was effective for younger typically achieving 
students. Third, common patterns of understandings 
were identified between the two students with 
dyscalculia, which were found to provide a productive 
explanatory frame for unexplained patterns of 
errors found in longitudinal studies of students with 
dyscalculia (Lewis, 2016; Mazzocco, et al. 2013). Fourth, 
these patterns of understandings were evident even 
in a student with dyscalculia who learned how to 
compensate effectively (Lewis & Lynn, 2018).  Due to the 
persistence of these patterns of understanding and 
the commonality across students with dyscalculia, in 
this study we sought to evaluate how common these 
patterns were in students in general.  The idea being 
that if these understandings were common in students 
with dyscalculia, but not typically achieving students, 
then these understandings could be used to selectively 
screen students for more extensive assessment 
and evaluation. The goal is to begin to disrupt the 
tautological relationship of low achievement and 
dyscalculia in the field, by identifying behavioral 
characteristics of the disability itself. 

In this section we begin by presenting our sociocultural 
theoretical framing of dyscalculia, drawing upon 
Vygotsky’s (1929/1993) conception of disability as 
qualitative human variation.  We then describe the 
patterns of understanding identified in Lewis (2014), 
and consider these patterns in light of our theoretical 
framing. 

Difference Not Deficit

Vygotsky’s theory of disability is focused on 
understanding qualitative differences and is situated 
within his general theory of human development. 
Vygotsky (1981) argued that all human development 
progresses along two lines: the biological and 
sociocultural. For typically developing individuals, 
these two lines of development intersect. The 
individual’s biological development intersects with 
the sociocultural line of development through social 
interactions which are mediated by tools (e.g., 
pencil) and signs (e.g., language). For individuals 
with disabilities, the sociocultural tools and signs 
that have developed over the course of human 
history may be incompatible with the individual’s 
biological development (Vygotsky, 1929/1993). For 
example, spoken language is not accessible to a 
Deaf child and therefore does not serve the same 
mediational role to support the child’s development of 
language as it would for a hearing child. In the case 
of students with dyscalculia, standard mathematical 
mediational tools (e.g., numerals, representations) 
may be incompatible with how these students 
process numerical information. Vygotsky (1929/1993) 
argued that this divergence of the sociocultural and 
biological lines of development does not result in an 
individual that is less developed, but an individual 

who has developed differently. This theoretical 
framing suggests that students with dyscalculia may 
use and understand standard mediational tools and 
signs in ways that are qualitatively different from and 
inconsistent with canonical mathematical usage. 
Therefore, analytically it is critical to attend to the 
unconventional ways that students understand and 
use standard mathematical representations. 

Unconventional Understandings Identified in Fractions 

Lewis (2014) identified unconventional fraction 
understandings in two extreme cases of dyscalculia 
– two adult students (ages 18 and 19).  Both students 
entered their schooling with considerable privilege, 
both students were White, upper-middle class, and 
native English speakers.  They attended well-resourced 
schools and both students had access to additional 
support and tutoring outside of school.  Despite 
these supports, both students had low mathematics 
achievement and a long history of difficulties with 
mathematics which could not be explained by 
affective or environmental factors. These students 
also did not benefit from a series of tutoring sessions 
that were effective for younger typically achieving 
students (see Lewis, 2014 for details). A detailed analysis 
of video data from the tutoring sessions on fractions 
identified a small set of reoccurring and persistent 
understandings that the students relied upon, which 
were ultimately detrimental to their learning.  These 
understandings involved using mathematical 
representations in unconventional ways. Both 
students had similar unconventional understandings 
which resulted in a similar pattern of errors.  These 
unconventional understandings involved how students 
represented and understood the fraction ½ (halving 
understanding) and how they interpreted fraction 
representations in terms of the fractional complement 
(fractional complement understanding). 

Unconventional halving understanding 

The unconventional halving understanding involved 
representing the fraction ½ by halving a shape, in 
which the partition line itself was understood as the 
representation of ½ rather than 1 of the 2 parts (see 
Figure 1). For example, when students were asked to 
draw a picture of ½ they would draw a shape and 
partition it into two parts.  When asked what part 
of their drawing represented ½, they would point to 
the partition line itself, often accompanying their 
explanation with a chopping gesture.  Characteristic 
of this kind of understanding is a focus on the 
equality or balance between the two parts. For these 
students ½ was understood as an action, splitting, 
rather than a fractional quantity (e.g., 1 part out of 2). 
Although students’ experiences splitting, partitioning, 
and sharing have been shown to be a productive 
resource upon which students can build (e.g., Empson, 
1999; Steffe, 2010; Wilkins & Norton, 2011) the halving 
understanding was detrimental for both students in 
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that it led to errors and limited the utility of various 
fraction representations (e.g., area models). Both 
students understood the fraction ½ as a process, 
rather than an object (Sfard, 1991), meaning that ½, the 
most intuitive and best understood fraction (Hunting & 
Davis, 1991) was not understood as a quantity.

Figure 1
Illustration contrasting the conventional understanding of 
one-half with the unconventional halving understanding 
found in students with dyscalculia (Lewis, 2014). Adapted from 
Difference Not Deficit: Reconceptualizing Mathematical 
Learning Disabilities, copyright 2014, by the National Council 

of Teachers of Mathematics. All rights reserved

Unconventional fractional complement   
understanding. 

The unconventional fractional complement 
understanding involved interpreting fraction 
representations in terms of the fractional 
complement. For example, interpreting an area model 
representation of ¾ as ¼ (unshaded/total) or 1/3 
(unshaded/shaded), where the unshaded region was 
understood to be focal (see Figure 2)4. Although on the 
surface this might seem to be an issue of convention – 
attending to the white rather than shaded parts – for 
these students it reflected a disconnection between 
how students constructed and interpreted fractions. 
For example, when asked to draw the fraction ¾, they 

would draw a shape, partition it into 4 equal parts, 
and shade 3 of those parts.  However, when asked 
what their own drawing represented, they would say 
“one-fourth” explaining that three parts were taken 
away, and one part was left. This suggested that these 
students did not have a stable way of representing a 
fractional quantity and the quantity itself transformed 
through the act of representing it.  Characteristic of 
this understanding was conceptualizing the shaded 
fractional quantity as “taken away” or “gone” and 
referring to the unshaded fractional complement as 
an amount “left.”  More telling was that instructional 
attempts to correct this apparent “mistake” were not 
successful, even though the students knew that they 
made these errors, they could not stop themselves 
from thinking of the shaded as “gone” and the 
unshaded as “left” (Lewis, 2017).

Figure 2
Illustration contrasting the conventional understanding of 
area models with the unconventional fractional complement 
understanding found in students with dyscalculia (Lewis, 2014). 
Adapted from Difference Not Deficit: Reconceptualizing 
Mathematical Learning Disabilities, copyright 2014, by the 
National Council of Teachers of Mathematics. All rights 

reserved

Issues of access

These unconventional understandings (halving and 
fractional complement) were evident across a range 
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of different problem types and representations.  
These understandings appeared when students 
were working with number lines, concrete fraction 
representations, and drawn pictures (e.g., area 
models).  These unconventional understandings 
led to errors and resisted all standard instructional 
efforts to address them.  These understandings were 
also not evident in typically achieving students who 
participated in the tutoring sessions.   These halving 
and fractional complement understandings involved 
an issue of access, where standard mediational tools 
(e.g., fraction notation, area models) were not serving 
the purposes they were intended to support.  Rather 
than understanding representations of fractions to 
show quantity, they understood these representations 
to show action (e.g., “taking”).  Their understandings 
were, therefore, incommensurate with conventional 
mathematics use. Perhaps because the students 
understood fractional quantities as processes rather 
than objects, they had difficulty using these fractional 
quantities in other processes (e.g., adding ½ and 1/3 or 
finding an equivalent fraction for ¾) (Sfard, 1991). Not 
only did the unconventional understandings persist 
through the weekly tutoring sessions, but follow up 
studies suggested that these understandings persisted 
across multiple years (Lewis, 2017). 

The Current Studies

To evaluate the prevalence of these kinds of 
understandings and the utility of using these 
characteristics to screen students, we designed a 13-
item group administered paper-and-pencil assessment.  
We refer to this assessment as a “Screener” because 
we are specifically interested in screening students for 
halving and fractional complement unconventional 
understandings.  The screener questions were based 
on questions from Lewis (2014) in which students 
demonstrated these unconventional understandings.  
Students were asked to draw, interpret, compare and 
operate with a variety of fractional quantities.  For 
a complete list of questions with scoring guide see 
Appendix A. The screener questions were deliberately 
designed to elicit evidence of halving or fractional 
complement understandings, therefore, we did not 
specify the manner in which students should interpret 
fraction representations. Students were given one 
unconventional understanding point for every 
problem in which their answer reflected a halving or 
fractional complement understanding.  A higher score 
on the screener meant the student demonstrated 
higher levels of unconventional understandings.

We evaluated the promise of this kind of screener 
with two studies. In the first study we evaluated how 
common these patterns of understanding were in a 
large sample (n = 390) of middle school students (i.e., 
grades 6-8; ages 11-14). Study 1 addressed the following 
research questions: 

1. Can unconventional fraction understandings 
(halving and fractional complement) be 
identified on a group administered written 
assessment?

2. What is the prevalence of these kinds of 
understandings?  

3. Are unconventional understanding scores 
correlated with mathematics achievement 
scores? 

In the second study, we used this assessment to 
selectively recruit students to participate in an 
individual interview and assessment to determine 
whether students who demonstrated these 
unconventional understandings met rigorous DSM-5 
dyscalculia criteria. Study 2 addressed the following 
research questions:

1. Do students with high unconventionality 
scores on the Screener demonstrate the same 
unconventional understandings during a clinical 
interview?

2. Do these students with high unconventionality 
scores meet rigorous DSM-5 dyscalculia criteria?

These studies together establish that building off the 
unconventional understandings identified in detailed 
analyses of extreme cases provides alternative 
avenues to selectively screen for characteristics of 
dyscalculia.

Study 1

In Study 1 we sought to evaluate whether it was   
possible to use the group administered Screener to 
identify the characteristic understandings found in 
students with dyscalculia. This paper-and-pencil 
assessment (see Appendix A) was administered to 
390 students in grades 6-8 (i.e., middle school students, 
approximate age 11-14). Middle school (grades 6-8) was 
selected as the target age because these students 
would have had adequate exposure to fractions, 
given that fractions instruction generally begins in 
grade 3 in the United States (e.g., Common Core 
State Standards for Mathematics; National Governors 
Association Center for Best Practices & Council of 
Chief State School Officers, 2010). We also collected 
state mandated achievement test mathematics 
scores to evaluate whether unconventionality scores 
were inversely correlated with achievement.

Methods

Data Collection

Mathematics teachers (n = 6) at a California middle 
school administered the Screener to all students 
during math class (n = 390). The teachers also provided 
each student’s state mandated achievement test 
mathematics score from the prior academic year. In 
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California, at the time, the mandated achievement test 
was the STAR test (Standardized Testing and Reporting 
program; http://www.cde.ca.gov/ta/tg/sr/). In order 
to collect these data and preserve student anonymity 
(a stipulation of our human subjects approval), 
when students completed the Screener, the teacher 
removed the cover page (with the student’s name) 
and wrote the student’s STAR test score on the now 
anonymized assessment. The research team received 
anonymized written responses on the Screener along 
with the student’s STAR test score. One out of six of the 
teachers did not provide STAR test scores for her 50 
students. 

Analysis

Our research team scored the screeners for   
correctness and evidence of unconventional 
understandings. We assigned one unconventional 
understanding point for each answer which was 
consistent with an unconventional halving or 
fractional complement understanding (see examples 
Appendix A). For example, (see Figure 3) the student 
interpreted an area model of 3/5 and 3/4 as 2/3 and 
1/3 (unshaded parts/shaded parts), respectively. The 
student was given one unconventional point for this 
problem because the student’s response (which 
treated the unshaded pieces as focal) aligned with a 
fractional complement understanding. 

Figure 3
Student work "(B) is bigger because it is 2/3 instead of 
1/3." This answer would receive one unconventional 
understanding point for fractional complement 
because 3/4 and 3/5 were interpreted in terms of the 
fractional complements, 1 unshaded part for ¾ and 2 
unshaded parts for 3/5, respectively (i.e., 1/3 and 2/3; 
unshaded/shaded)

Reliability and Validity Measures

All assessments were scored by at least two different 
scorers (see Appendix A for scoring criteria) Reliability 
for scoring was high: 97.9%. All discrepancies were 
resolved during our research meetings by reviewing 
the students’ answers and our scoring criteria and 
reaching a consensus decision. 

To evaluate the validity of this screener we conducted 
an item factor analysis. The parallel analysis showed 
that there is more than one factor measured by the 
test. The exploratory factor analysis further confirmed 
that a two-factor model outperformed a one factor 
model for these data.  We determined the two 
factors were, as hypothesized: halving and fractional 
complement.  Items 3 and 4 were removed from the 
confirmatory factor analysis because they were not 
associated with either fractional complement or 
halving. The confirmatory factor analysis showed that 
Items 1, 2, 5, and 12 loaded on factor 1 (halving), with 
questions 1 and 2 (“draw ½” and “draw another way 
to show ½”) loading strongly on factor 1 (halving).  The 
confirmatory factor analysis indicated that items 6, 7, 
8, 9, 10, 11, 13 all strongly loaded onto factor 2 (fractional 
complement). The results of the confirmatory factor 
analysis are presented in Table 1, standardized factor 
loadings are between -1 and 1, with larger absolute 
values indicating a stronger association between the 
item and the factor.  Because this screener is measuring 
two factors, Cronbach’s alpha was understandably 
low (0.61), but the correlation between the two factors 
was moderately high (0.31).

Table 1
Standardized Loadings for 2-Factor Confirmatory 
Model of Unconventional Fraction Understandings (n 
= 390)

Item 

Number

Question Description Factor 1 – 

Halving

Factor 2 – 

Fractional 

Complement

1 Draw ½ 0.98

2 Draw ½ 0.99

5 Interpret ½ 0.35

6 Compare 1/6 and 1/8 0.82

7 Compare 2/8 and 5/8 0.74

8 Interpret area model of 4/5 0.79

9 Interpret area model of 

8/10

0.76

10 Compare ¾ and 3/5 area 

models

0.86

11 Compare 4/5 and 3/5 area 

models

0.90

12 ½+1/4 = 0.60

13 Interpret eight 1/10 0.53

Results

The results for Study 1 are presented in three parts. 
First, to evaluate whether it was possible to identify 
unconventional understandings on a written 
assessment, we present some exemplar written 
responses which illustrate unconventionality, either a 
fractional complement or a halving understanding. 
Second, we present an overview of the students’ 
scores on the Screener to report the prevalence of 
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these understandings. Finally, we evaluate whether 
unconventionality scores on the screener were 
associated with students’ standardized mathematics 
achievement test performance. 

Exemplar Unconventional Understandings

To illustrate prototypical unconventional 
understandings, we present several examples from 
students’ responses and discuss how these reflect 
a potential halving or fractional complement 
unconventional understanding. 

Unconventional Halving Understanding 

Students’ answers were coded as consistent with 
a halving understanding (Lewis, 2014) if they drew 
or interpreted the fraction ½ as a halved shape (see 
Figure 4). For example, a “halving understanding” 
was reflected in Figure 4a because the student drew 
a shape and partitioned it in two but did not shade 
or label either piece. Similarly, instances in which 
students selected an unshaded halved circle as a 
valid representation of ½ were considered consistent 
with a halving understanding (see Figure 4b). Finally, 
some students represented the fraction ½ without 

shading when asked to solve the problem ½ + ¼=. In 
this particular example (see Figure 4c), the student 
represented both ½ and ¼ with no shading. It is 
unclear what the student’s intermediate drawings 
were intended to represent, but their final answer (an 
unshaded halved shape) was interpreted as ½ in their 
final answer and therefore was coded as consistent 
with a halving understanding.

Unconventional Fractional Complement 
Understanding 

The fractional complement understanding occurred 
more often in cases in which the problem involved 
interpretation of a fraction. For example, student 
answers indicative of a fractional complement 
understanding included judging eight one-tenth 
pieces to be 2/10 (pieces missing/total pieces; see 
Figure 5a) or 1/8 (one empty space/pieces shown; 
see Figure 5b). Similarly, answers in which the student 
interpreted an area model in terms of the unshaded 
pieces (e.g., interpreting 4/5 as 1/5 (unshaded/total) 
and 8/10 as 2/10 (unshaded/total)) were also coded as 
indicative of a fractional complement understanding 
(see Figure 5c).

Figure 4
Exemplar written responses coded as consistent with a halving understanding

Figure 5
Example answers coded as consistent with a fractional complement understanding
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Fractional complement understanding was also 
evident in errors involving comparison of fractions. For 
example, a student incorrectly judged that 2/8 was 
larger than 5/8 explaining, “2/8 is more because if 
you shad in 2 parts you woud get more triangles” (see 
Figure 6). In this example, the student presumably sees 
more “triangles” in the drawing of 2/8 because there 
are 6 unshaded parts versus the 3 unshaded parts in 
the drawing of 5/8.

Figure 6
Student answer and explanation that 2/8 is more than 
5/8

Similarly, when students made errors on comparing 
an area model of 4/5 and 3/5, their answers often 
reflected a fractional complement understanding. 
For example, one student interpreted the area model 
of 4/5 as 1/5 and the area model of 3/5 as 2/5 (see 
Figure 7). In both cases the student attended to the 
unshaded parts as the focal fractional quantity and 
therefore incorrectly determined that the latter was 
larger.

Figure 7
Student answer and explanation that an area model 
for 3/5 is larger than 4/5

Although both halving and fractional complement are 
distinct understandings on this Screener we totaled the 
number of answers which were consistent with either 
a halving or a fractional complement understanding 
to produce one total score of unconventionality. 
A student receiving a higher unconventionality 
score would have more answers which indicated a 
fractional complement or halving understanding.

Student Performance on the Screener

To analyze the students’ scores on the Screener, 
we considered the total unconventionality score 
obtained by each student. Only 6% of students had 
an unconventionality score of four or more points 
(indicating answers aligned with an unconventional 
understanding on more than 30% of problems; see 
Figure 8). The majority of students (59%) demonstrated 
no unconventional understandings. Another 22% of 
all students received only 1 unconventional point, 
and more than 63% of these students received an 
unconventionality point for circling the unshaded 
circle partitioned in 2 as one possible representation 
of ½ along with other valid representations.  Therefore, 
as expected, most students demonstrated no 
unconventional understanding on the Screener.

Figure 8
Percentage of students who scored in each 
unconventional point range on the Screener (n = 390)

Achievement Test Scores

We collected student achievement scores to 
investigate whether unconventionality was simply 
a characteristic of low mathematics achievement 
(and consequently simply replicating achievement 
measures). We evaluated whether the students’ 
unconventionality scores were correlated with 
their standardized achievement test scores. For this 
analysis we omitted 89 students for whom we did not 
receive STAR achievement mathematics test scores. 
One teacher did not provide this information to the 
research team (n = 50), and there were missing data 
for specific students in other classes. This missing 
data could be due to a variety of reasons, student’s 
absence during STAR testing, transferring to the district 
or class, or an error of omission on the teacher’s part. 
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When viewing the scores as a scatterplot (see Figure 
9), it is evident that the students with the highest 
unconventionality scores were not necessarily the 
lowest achieving students, and some of the lowest 
achieving students had no unconventionality points. 
This suggests that this kind of approach – identifying 
characteristic patterns of reasoning – may be 
a promising approach to begin differentiating 
dyscalculia from low mathematics achievement due 
to other factors.

Figure 9
Scatterplot of achievement test scores and 
unconventionality points on the Screener, identical 
values are jittered

Summary and Conclusion

Study 1 found that the unconventional understandings 
documented in students with dyscalculia were 
evident on the group administered written Screener. 
This study suggests that these unconventional 
understandings, previously only documented with 
time intensive qualitative analysis of video data, 
are possible to identify in a group administered 
screener. Furthermore, the percentage of students 
with higher unconventionality scores (i.e., 4+ points) 
was approximately equivalent to the estimates for 
prevalence of dyscalculia (Shalev, 2007). Data from 
state mandated assessments suggested that high 
unconventionality scores were not only occurring 
in the lowest achieving students; furthermore, not 
all low achieving students demonstrated these 
unconventionalities. This suggests that this screener is 
measuring something different than low mathematics 
achievement. Due to the anonymized nature of the 
data we were not able to follow up with individual 
students who had high unconventionality scores. It 
remained an open question whether students who 
demonstrated high levels of unconventionality on 
the assessment would continue to exhibit these 

understandings over time and whether those students 
would also meet standard dyscalculia identification 
criteria. To investigate these questions, we conducted 
Study 2.

Study 2

In Study 2 we wanted to determine if the 
unconventional answers given on the Screener 
persisted and whether these students met rigorous 
DSM-5 dyscalculia criteria. We administered the 
Screener to 80 middle school students and recruited 
those students with high unconventionality scores to 
participate in an additional individualized assessment. 
The criteria for “high unconventionality” was set at four 
or more unconventional points, because this indicates 
reliance upon unconventional understandings across 
a significant number of problems (i.e., more than 30% 
of problems).  Although it may have been interesting 
to assess students with two or more unconventional 
points to determine if they have an unconventional 
understanding of standard pedagogical 
representations, we focused on students with the 
highest levels of unconventionality (4 or more points) 
due to time constraints. We conducted individual 
problem solving clinical interviews to evaluate 
whether these students did rely upon unconventional 
understandings. We conducted an individualized 
standardized achievement test (Woodcock Johnson 
IV; Schrank et al., 2014) and background interview 
to determine whether these students with high 
unconventionality scores met standard DSM-5 
dyscalculia criteria. 

Methods

Data Collection

All middle school students (grades 6-8) enrolled at 
a private school for students with language-based 
learning disabilities were assessed using the Screener 
(n = 80). The student’s enrollment at this school ensured 
that these students had intelligence scores in the 
normal range and therefore eliminated the possibility 
of intellectual disability. We anticipated that a higher 
percentage of students recruited from this school 
would have high unconventionality scores given 
the documented comorbidity between dyscalculia 
and dyslexia (e.g., Knopik et al., 1997; Wilson et al., 
2015). However, Lyon, Shaywitz and Shaywitz (2003) 
argue that although there is well known comorbidity, 
the cognitive characteristics associated with each 
of these disabilities are sufficiently distinct (e.g., 
phonemic awareness vs. number processing) and do 
not present a problem in studying one independent 
from the other. In addition, the reading demands of 
the screener were minimal, and therefore, the impact 
of the student’s difficulties with reading were not 
considered to be problematic for this study. 
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Each mathematics teacher at the school administered 
the Screener to their students (n = 80). The cover page 
and first page of the assessment were numbered with 
a test ID. When students completed the assessment, 
the teacher removed the cover page (with the 
student’s name), and retained the cover sheet for 
subsequent recruitment efforts. The research team 
scored these assessments anonymously. To recruit 
students for the main study, the teachers were given 
a list of test IDs associated with students who had 
unconventionality scores of at least 4 points. Teachers 
used the cover sheets to distribute consent materials 
to students who qualified. Consents were directly 
returned to the research team through the U.S. Postal 
Service. Parents and students who did not want to 
participate were asked to simply discard their forms to 
preserve their anonymity. Seven students met the high 
unconventionality threshold and we received consent 
forms for three of these students.

Several kinds of data were collected for the three 
students who participated in the individual assessment 
including: (a) background interview, in which the 
students reported on their resources and their prior 
experiences learning and doing mathematics, (b) 
a clinical interview problem solving session in which 
the student solved the questions from the Screener, 
and (c) an individually administered standardized 
achievement test. Due to scheduling constraints these 
individual sessions were conducted eight months after 
the original assessment data.

Background interview

The students were interviewed and asked to provide 
a self-report of their academic background, the 
kinds of difficulties they experienced in mathematics, 
their level of effort, available resources (e.g., tutoring, 
teacher help), and home language (see Appendix B). 
The goal of the background interview was to assess 
the student’s level of perceived effort and educational 
resources as well as to establish rapport.  Note that we 
did not collect data on the socioeconomic status of 
the student and their families, but these students were 
all paying tuition to attend a private school, suggesting 
the families had sufficient financial resources.

Problem solving interview 

In the problem solving clinical interview, the students 
were asked each of the questions from the Screener. 
For each of the student’s answers, the interviewer 
asked the student to explain their solution and/or 
process. Because it had been over eight months 
between the administration of the Screener and the 
interview, we were not concerned about practice 
effects. 

Both the background interview and problem solving 
interview were video recorded and were conducted 
by the first and second authors.

Standardized measure. To determine if the students 
met the low mathematics achievement clinical 
criteria established in the DSM-5, all three students 
were assessed using the mathematics subtests of the 
Woodcock Johnson IV Test of Achievement (Schrank 
et al., 2014). The subtests included, Applied Problems, 
Calculation, and Math Facts Fluency. 

Analysis

Screener 

As in Study 1, the written screener assessments were 
scored by at least two different scorers (see Appendix 
A for scoring criteria). Reliability for scoring was high, 
97.6%. All discrepancies were resolved during our 
research meetings by reviewing the students’ answers 
and reaching a consensus decision. 

Case study analysis 

For the three students who qualified for and 
consented to participate in the individual assessment, 
we transcribed the video recordings and scanned all 
written artifacts. 

Background interview 

For the background interview, the first and second 
authors reviewed the students’ answers and identified 
any potential confounding factors which could explain 
the student’s mathematics difficulties. We looked for 
self-reports of insufficient educational opportunity, 
insufficient resources, poor prior teaching, or difficulty 
with attention or behavioral control. 

Problem solving interview

For the problem solving interview, the first and second 
authors coded these videos using the coding scheme 
from the Screener. We allowed student’s explanations 
to disambiguate answers when needed, similar to the 
way we used written explanations on the Screener. 
Reliability for this coding was 85.2%. All discrepancies 
were resolved by reviewing the video and reaching 
consensus on how the question should be scored.

Results

The results are presented in two parts. First, we present 
each case by illustrating the students’ unconventional 
answers from the screener and how these same 
patterns of reasoning were evident during the 
interview. Then we evaluate whether these three 
students met the standard DSM-5 dyscalculia criteria. 
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Case Study Students with High Unconventionality 
Scores

Out of the 80 students assessed, only 7 students (9%) had 
an unconventionality score of four or above. These 7 
students were recruited to participate in the interviews 
and standardized assessment. Three students, “Ryan,” 
“Lily,” and “Maddie” (all pseudonyms) returned 
consent forms. All three students who consented 
to participate in the main study demonstrated the 
same unconventional understandings during the 
interview that they did on the screener (see Table 2). 
Ryan and Lily demonstrated halving and fractional 
complement understandings on both the screener 
and interview. Maddie demonstrated a fractional 
complement understanding, and did so on both the 
screener and interview. For each case study student, 
we present answers given on both the screener and 
the interview which highlight the persistence of these 
unconventional understandings.

Table 2
Unconventional understanding points on the screener 
and interview

Assessment Fractional 

Comple-

ment Points

Halving 

Points

Total Uncon-

ventional 

Understand-

ing Points

Ryan 
Screener 3 1 4

Interview 1 3 4

Lily 
Screener 3 1 4

Interview 6 1 7

Maddie 
Screener 4 0 4

Interview 5 0 5

Ryan

On the screener Ryan demonstrated both an 
unconventional halving and fractional complement 
understanding. In Ryan’s answers on the screener, a 
halving understanding was evident on one problem, 
in his selection of the non-shaded halved circle as a 
valid representation of ½.  Ryan also demonstrated 
a fractional complement understanding in his 
comparison of fractions on the screener. When 
asked to compare fractions, he incorrectly judged 
1/8 to be greater than 1/6 and 2/8 to be greater than 
5/8 drawing accurate areas models for each. He 
also incorrectly judged an area model for 3/5 to be 
greater than 3/4, and an area model of 3/5 to be 
greater than 4/5. In each instance, his explanations 
identified “more space” in the fraction he judged to 
be larger, which was consistently the fraction with 
more unshaded parts. This suggests that, particularly 
on comparison problems, Ryan was relying upon a 
fractional complement understanding. 

On the interview both these unconventional 
understandings resurfaced but with different 
frequency. A halving understanding occurred more 
frequently, and fractional complement understanding 
occurred less frequently. When Ryan was asked 
to draw the fraction 1/2, he drew several different 
representations including a pizza, a pie, and a 
pedestrian “don’t walk” sign (see Figure 10). In each 
of these cases, he omitted shading. When asked to 
identify the part of his picture that was one-half he 
indicated that one-half was the partition line.

Figure 10
Ryan’s drawings of 1/2 (pedestrian “don’t walk” sign, 
pizza, and pie)

Interviewer: Can you explain to me how your pictures 
show one-half?

Ryan: Um, because they have a line right down the 
middle [points to line in the center of the pie, see 
Figure 10], and this side's equal [points to right side of 
pie], and this side's equal [points to left side of pie]. Like 
1, 2 [writes ½] or... [starts pointing to the pizza slices in 
his drawing] I don't know how many pieces of pizza 
that is, but, yeah.

Interviewer: So where is the one-half in this picture?  
[points to pizza]

Ryan: [points along center dividing line; see Figure 11] 
Right there.

Figure 11
Ryan’s drawing of 1/2 of a pizza with a dotted line 
indicating where he gestured to identify where one-
half was in his drawing
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In Ryan’s explanations he focused on the equality of 
the two halves and the partition line itself. Although 
Ryan’s drawing of the pizza pieces and his attempt 
to count them up, suggests that he might have 
been attending to one-half of his circle (or pizza), 
when specifically asked where the one-half was 
in his picture, he identified the partition line itself 
and not the pieces on one side of the pizza as the 
representation of 1/2. Ryan’s unshaded and halved 
representations along with his explanations focusing 
on the partition line itself was taken as evidence of his 
halving understanding. 

In contrast to Ryan’s halving understanding, a fractional 
complement understanding occurred only once 
during his interview.  On an interpretation problem, 
Ryan determined that the eight 1/10 pieces (see 
Figure 12) was equal to 1/8. This reflected a fractional 
complement understanding because he attended to 
the missing part (perceived as 1 missing part) and the 
number of pieces displayed (i.e., 8). This was coded 
as a fractional complement understanding because 
it involves naming the fraction in terms of the missing 
amount.

Figure 12
Interpretation problem which presents eight 1/10 
pieces and asks student to interpret the amount shown

Although the halving and fractional complement 
understandings were evident on different problems 
and had different frequencies on the screener and 
in the interview, in both instances, Ryan’s answers 
and explanations indicated his reliance upon these 
understandings found in students with dyscalculia. 

Lily

Lily demonstrated both a halving and fractional 
complement understanding on the screener and 
interview. Like Ryan, Lily selected the unshaded 
halved circle as a valid representation of ½, and did 
so both on the screener and interview. Therefore, 
there was consistency in her halving understanding. 
Lily also demonstrated consistency in her fractional 
complement understanding. On the screener Lily 
interpreted 4/5 and 8/10 as 1/4 (unshaded/shaded) 
and 8/2 (shaded/unshaded), clearly attending to the 

unshaded pieces as focal (see Figure 13). In addition, 
many of her area model comparison problems 
were also aligned with attending to the fractional 
complement (e.g., larger fraction determined by 
largest unshaded area; Figure 14), but these were not 
coded as such because she did not provide a written 
explanation for her judgments. 

Figure 13
Lily’s screener responses that were coded as
consistent with a fractional complement understanding, 
because she focused on the unshaded (fractional 
complement) pieces in her interpretation of the fraction

Lily’s interpretation of the area models 4/5 and 8/10 
during the interview was similar to her answers on the 
screener. During Lily’s interview, she again identified 
4/5 as 1/4 (unshaded/shaded) and identified 8/10 as 
2/8 (unshaded/shaded), focusing on the pieces she 
referred to as “left.”

Figure 14
Lily’s answers that were potentially due to a 
fractional complement understand (judging fractions 
based on unshaded parts) but were not coded as 
unconventional, because she did not provide an 
explanation for her answer
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Figure 15
Tutor drawn representation of 4/5 (digitally recreated), 
which was repartitioned to produce 8/10

Interviewer: [draws 4/5; see Figure 15a]  Okay, so this 
is a picture of –

Lily: One-fourth.

Interviewer: So this is a picture of one-fourth?

Lily: Yeah.

Interviewer: Okay. So then another student came 
along and did this to her picture. [draws horizontal 
line; see Figure 15b]  Can you tell me what fraction 
that is?

Lily: [pointing to unshaded sections]  Is she crossing 
out this?  Oh. 

Interviewer: So she...

Lily: Two-eighths.

Interviewer: Two-eighths?

Lily: Yeah.

Interviewer: Okay. Can you tell me how you got that 
answer?

Lily: Well, [points to picture], if you divide it in half, this 
makes 8, because 1, 2, 3, 4, 5, 6, 7, 8, [gestures over 8 
shaded pieces, each in turn] and then there's 2 left 
over [points to 2 unshaded pieces].
 

Lily interpreted the fraction in terms of the unshaded 
pieces and referred to those pieces as “left.”  Lily’s 
tendency to interpret fractions by attending to 
the fractional complement (unshaded parts) also 
emerged as she compared area models of 3/4 and 
3/5. As she had done on the screener, she judged the 
drawing of 3/5 to be larger. When asked to explain her 
answer, she interpreted each fraction in terms of the 
number of unshaded parts and shaded parts; 3/5 was 
interpreted as 2/3 and 3/4 was interpreted as 1/3.

Interviewer: In looking at these two pictures, can you 
tell me which one is larger, or are they equal?

Lily: [touches drawing of 3/5 firmly with finger, 5 times; 
see Figure 16]  This one.

Interviewer: Do you want to circle it?

Lily: Naw, that's okay. Just that one [points to drawing 
of 3/5].

Interviewer: Can you tell me – you're pointing to this 
one –

Lily: Yeah.

Interviewer: – it's larger? Can you tell me how you 
know that?

Lily: [points to drawing of 3/5]  There's... it's two-thirds, 
and then this one is [pointing to drawing of 3/4], one-
third. So this one's more [points to drawing of 3/5], 
there's 2 that got left out kind of.

Lily’s judgment that 3/5 was larger than 3/4 was based 
on her attention to the unshaded pieces, which she 
again referred to as “left out.”  Lily consistently relied 
upon a fractional complement understanding. Given 
the consistency of Lily’s answers on both the screener 
and the interview, the fractional complement 
understanding provides a plausible explanation for 
Lily’s errors on the area model comparison problems 
on the screener (see Figure 14).

Figure 16 
Printed question asking student to compare ¾ and 3/5 
represented with area models

Figure 17
Maddie’s written responses on the screener for the 
comparison problem of 2/8 and 5/8, in which she 
determined 2/8 was larger

Maddie 

Unlike Ryan and Lily, there were no instances of 
Maddie demonstrating a halving understanding on 
either the screener or the interview. She did however 
demonstrate a fractional complement understanding 
on both. When asked to determine which quantity 
was more, she struggled particularly when the 
denominators of the fractions were the same. For 
example, she judged 2/8 to be larger than 5/8.  Her 
solution helps illustrate how a fractional complement 
understanding was evident in this problem and how 
it was problematic (see Figure 17).  Maddie drew 
canonical representations for both 2/8 and 5/8, using 
shading to represent the fractional quantity.  However, 

(a) (b)
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she then judged 2/8 to be larger because there 
were “more pieces not shaded in.”  This highlights 
the disconnection between her canonical use of 
shading in her construction of the area models and 
her unconventional focus on the unshaded parts in 
interpreting her own drawings.  The quantities she 
compared were not the quantities she herself drew, 
but the fractional complements. 

Maddie again attended to the unshaded pieces 
when asked to compare area models of 4/5 and 
3/5 (see Figure 18), incorrectly judging that 3/5 was 
larger because there were more parts not colored in.  
For both same denominator comparison problems, 
she incorrectly believed the smaller amount was 
larger, and in each case, she justified her answer by 
identifying that there was more that was not shaded.

In addition to these comparison problems, Maddie’s 
fractional complement understanding was also 
evident when she interpreted the eight 1/10 pieces as 
2/8 (pieces missing/pieces shown; see Figure 19).

Although it was not as evident during the interview, 
Maddie continued to rely on a fractional complement 
understanding. When asked to interpret a drawn area 
model of 4/5 (see Figure 20a), she, like Lily, interpreted 
it first in terms of the unshaded amount (1/4; 
unshaded/shaded). When asked to justify her answer 
of 1/4, she justified it by noting the number of boxes 
colored in, but did not change her answer. When the 
interviewer repartitioned this area model to produce 
8/10 (see Figure 20b), she again initially focused on 
the two unshaded pieces. Unlike her previous answer, 
she eventually corrected this error. Throughout 
her explanations she vacillated between different 
interpretations of the representation. First providing a 
fractional complement answer (1/4) and justifying her 
answer with the shaded region, and then correcting 
her final interpretation (8/10) and justifying it based on 
the fractional complement.

Figure 18 
Maddie’s written responses on the screener on a 
comparison problem of 4/5 and 3/5 in which she was 
asked to circle the larger amount. She explains that 
3/5 is larger because "there are two lines that are not 
colered in."

Figure 19
Maddie’s written work interpreting eight 1/10 pieces 
in terms of the number of pieces missing (2) over the 
number of pieces shown (8)

Figure 20
Tutor drawn representation of 4/5 (digitally recreated), 
which was then repartitioned to create 8/10

Interviewer: Okay, one student I was working with 
drew a picture like this. [draws rectangle with 5 
sections, colors in 4; see Figure 20a]  What would you 
say that's a picture of?

Maddie: I think that would be one-fourth.

Interviewer:  How do you know?

Maddie: Because um, 4 – 4, I mean, um, 4 out of 5 
boxes were colored in.

Interviewer: Okay, 4 out of 5 boxes were colored in. So 
then another student came along and cut it in half 
like that. [draws line down the middle; see Figure 20b]

Maddie: Um, that would be...

Interviewer: What would you say that is now?

Maddie: It would be 8 out of 2 – or, 2 out of 8. No, 4 out 
of 8. Wait. 8 out of 10. 8 out of 10.

Interviewer: 8 out of 10?  How do you know?

Maddie: Because um, now that the squares are cut 
up, [touches picture], there are 8 that are colored and 
2 that are left.

In her interpretation of 8/10, Maddie corrected her 
initial fractional complement answers (8/2 shaded/
unshaded and 2/8 unshaded/shaded) and correctly 

(a) (b)
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determined that the repartitioned fraction was a 
representation of 8/10.  However, she still attended to 
the fractional complement (2 pieces) and referred to 
them as “left.” – one of the defining characteristics of 
the fractional complement understanding. 

Maddie’s focus on the unshaded space as the 
fractional quantity was also evident when asked to 
justify why she (correctly) did not select the unequally 
partitioned area model as a valid representation of ½ 
(see Figure 21). When asked why she did not select it, 
she interpreted the white (unshaded) part as the focal 
fractional quantity, and judged that the area model 
was more than ½. 

Interviewer: Can you explain why you didn't choose 
this one?

Maddie:   Because the white has more of – the white 
is covering more of the square.

Interviewer: So is this going to be less than one-half or 
more than one-half?

Maddie:  Um... [pause]  I think it would be... [pause]  I 
think it would be more. Um, because the white has 
more.

Figure 21 
Printed image that Maddie determined was more 
than 1/2

In her justification, Maddie understood this 
representation to be more than ½, suggesting that 
she was attending to the white space as the focal 
fractional quantity. 

As in Ryan’s case, there was some variation on the 
specific problems, which elicited her fractional 
complement understanding. On the screener it was 
primarily on comparison problems,  and in the interview, 
it was primarily during interpretation problems. These 
data suggest that Maddie relied upon a fractional 
complement understanding to make sense of various 
fraction representations in various contexts. 

Summary

All three students demonstrated unconventional 
understandings during the interview that were 

consistent with those documented in adults with 
dyscalculia (Lewis, 2014). Although there were often 
differences in the specific problems in which the 
understandings emerged, there was consistency in 
the nature of the understandings themselves. Maddie 
relied on a fractional complement understanding, 
and did so on both the screener and interview. Ryan 
and Lily demonstrated both a fractional complement 
and halving understanding. In Lily’s case there was 
consistency in the problems and specific reasoning 
on the screener and interview, whereas in Ryan’s case 
the same understanding persisted but with different 
frequencies and on different problems. We judge the 
screener to be a useful tool to identify students with 
these characteristic unconventional understandings 
given their high unconventionality scores on both the 
screener and interview. We then evaluated whether 
these three students met the standard criteria for 
dyscalculia classification established by the DSM-5.

Dyscalculia Classification

The DSM-5 requires that students with dyscalculia 
have persistent difficulties in mathematics that are 
evident during formal schooling and result in below 
average achievement. The DSM-5 recommends 
operationalizing “below average” as 1.5 standard 
deviations below the population mean on a norm 
referenced achievement test, which corresponds 
to the 7th percentile. Additionally, the student’s low 
achievement must not be due to lack of educational 
opportunity, poor instruction, lack of fluency in 
instructional language, developmental delay, or a 
sensory, motor, or neurological disorder. 

In order to evaluate whether these students also met 
the DSM-5 criteria for dyscalculia classification we 
considered students’ composite and subtest scores 
on the Woodcock-Johnson Test of Achievement IV 
(WJ-IV) and self-reports of their educational history 
and opportunity. The WJ-IV scores for each student 
are presented in Table 3. Lily and Ryan clearly met 
the “below average achievement” criterion, as all 
of their subtests and composite scores were below 
the 7th percentile. Maddie’s percentile scores were 
more variable. Maddie met the below average 
achievement criterion on only one subtest – Math Facts 
Fluency – and in one composite score (Mathematics 
Calculation Skills). Math Facts Fluency is the only timed 
math assessment within the WJ-IV, and researchers 
have argued for the importance of timed assessments 
of mathematics performance to accurately identify 
students with dyscalculia (e.g., Berch, 2005; Mazzocco, 
2009). Indeed, when completing the untimed sections, 
Maddie’s progress through the questions was laborious 
and time intensive. This suggests that she may have 
developed ways of compensating for her difficulties 
(see Lewis & Lynn, 2018 for a discussion), but that her 
difficulties were more evident under time constraints. 
Because Maddie’s score on a timed assessment fell 
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below the 7th percentile, we argue that she meets 
the dyscalculia criteria based on this more sensitive 
measure. 

Table 3
Percentile scores on the Woodcock Johnson IV Test of 
Achievement for the case study students.

Ryan Lily Maddie

Mathematics Composite 1 0.2 24

Broad Mathematics <0.1 <0.1 8

Math Calculation Skills <0.1 <0.1 7

Applied Problems 7 2 29

Calculation 1 0.1 25

Math Facts Fluency <0.1 0.2 2

In addition to the below average achievement 
criterion, the students’ self-reports indicate that 
these difficulties were evident in early school years, 
and the difficulties were not attributable to a global 
developmental delay, hearing, vision, neurological, or 
motor disorder. All students were White native English 
speakers (see Table 4) and therefore entered the 
school context with considerable privilege. Based on 
the individual self-reports all students had sufficient 
familial and educational resources (e.g., homework 
club, individual teacher/parent help), decreasing the 
likelihood that environmental or social circumstances 
were the origin of their difficulties in mathematics. 
These students were attending a private school for 
students with language-based learning disabilities, 
and although it is possible that their difficulties with 
language impacted their ability to learn mathematics, 
none of the students identified reading difficulties as 
an issue for them in mathematics.

Table 4 
Demographic information for case study students.

Ryan Lily Maddie

Gender Male Female Female

Race White White White

Age (years-months) 13-11 13-2 13-9

Grade 8 8 8

Conclusion

All three students who demonstrated high levels 
of unconventionality on the Screener continued 
to demonstrate these same unconventional 
understandings on the interview. This suggests that 
these understandings do persist over time and 
continue to lead to specific kinds of answers. All three 
students also met the qualifications for the DSM-
5 dyscalculia criteria. This suggests that it may be 
possible to screen for characteristics of dyscalculia 
with a group administered screener. 

Discussion

These two studies together provide a proof-of-
concept for a novel approach to addressing the 
intractable identification issues facing dyscalculia 
researchers.  Through these studies we provided a 
model for leveraging case study work in powerful 
ways to go beyond the individual cases and consider 
the prevalence of these patterns of understanding 
more broadly.  By using detailed qualitative studies 
of extreme cases to design group administered 
written assessments, it may be possible to make 
considerable progress towards delineating the 
unique characteristics of this disability.  This kind of 
approach is novel in that it attempts to define and 
identify dyscalculia by the unique characteristics (i.e., 
unconventional understandings) rather than defining 
dyscalculia as performance deficits.

Study 1 demonstrated that the unconventional 
understandings documented in Lewis (2014) were 
atypical.  Only 6% of middle school students had high 
unconventionality scores. The percentage of students 
with high unconventionality scores was approximately 
equal to the estimated prevalence of dyscalculia 
in the general population (Shalev, 2007). The fact 
that (a) not all low achieving students demonstrated 
unconventionalities, and (b) that the students with 
the highest levels of unconventionality were not 
necessarily the lowest achieving students, suggests 
that the Screener identified qualitative differences in 
understanding, rather than simply low achievement. 

Study 2 helped establish the validity of the Screener 
for identifying unconventional understandings.  The 
students with high unconventionality scores on the 
Screener in study 2, did rely upon and demonstrate 
unconventional understandings in their interviews. 
Furthermore, additional assessments found that all 
three of these students met rigorous dyscalculia 
criteria established by the DSM-5. These studies 
together provide evidence that it may be possible to 
build off characteristic understandings documented in 
adults with dyscalculia to develop novel approaches 
for identification. Unlike standard approaches 
which struggle to differentiate dyscalculia from low 
achievement, these studies suggest that it may be 
possible to identify the characteristics of dyscalculia 
on a group-administered assessment. 

Evaluation of the Screener

The validity of this Screening assessment was also 
evaluated through item factor analysis, which 
confirmed that this assessment measured two factors: 
halving and fractional complement.  Although there 
was variability in how strongly particular items loaded 
onto the associated factor, we find analytic utility in all 
items. For example, although items 3 and 4 (draw 3/5; 
draw 1 5/8) did not load onto fractional complement, 
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these questions did provide essential information 
for how the student understood the shading when 
drawing area models.  If a student used shading to 
represent the numerator (i.e., fractional quantity) in 
their drawings, but used the unshaded parts to interpret 
the fractional quantity, it suggests an unconventional 
understanding of the shading.  It is precisely because 
of the disconnection between how students draw 
and interpret area models that these items would 
not load strongly onto fractional complement, but 
nevertheless provide important information about 
the students’ understanding.  Similarly, although item 
5 (interpret ½) did not load as strongly onto factor 1 
(halving) we believe that this item provides important 
insight.  For example, it was only on this item on the 
Screener that Ryan’s tendency to understand ½ as 
halving was evident.  The interview demonstrated that 
Ryan did rely upon a halving understanding when he 
drew non-shaded halves and identified the partition 
line itself as a representation of ½.  Therefore, although 
some items did not load strongly onto the two factors, 
we believe they provide important insight into the 
students’ understanding.

Future Research

We acknowledge that this Screener only includes 
a small subset of ways in which students with 
dyscalculia may understand mathematics in different 
ways.  It is possible that additional research into how 
these students represent these fraction quantities 
on the number line (Schneider & Siegler, 2010) or 
compare fraction magnitudes (Meert et al., 2009) 
would yield insight into their understanding of fraction 
quantity. The field needs to invest in more detailed 
studies of extreme cases to specifically identify the 
characteristics of this disability across a range of 
mathematics topics. This suggests a dramatic shift 
from a focus on identifying performance deficits in 
speed and accuracy, to a focus on identifying what 
students with dyscalculia are doing and how these 
understandings may be unconventional.  Until then, 
leveraging these characteristics may enable the 
development of alternative identification approaches. 
For example, if dyscalculia impacts students’ learning 
across all mathematics topics (e.g., Lewis & Lynn, 2018) 
it may be possible to selectively recruit students with 
unconventional fraction understandings and then 
explore how these students make sense of other 
topics, like algebra. 

Implications for Research and Practice

The issue of accurate dyscalculia identification 
has far reaching consequences for research and 
practice.  Current use of the low achievement 
criteria has resulted in heterogeneous groups of 
students erroneously labeled as dyscalculic.  Studies 
of dyscalculia that rely on this problematic and 

imprecise proxy are often studying low mathematics 
achievement – often due to inequitable educational 
opportunities – in the name of dyscalculia. The 
unintended consequences of this widespread use of 
this insufficient operational definition has resulted in 
myriad studies arguing that students with dyscalculia 
simply lag behind their peers (e.g., Gonzalez & Espinel, 
2002; Keeler & Swanson, 2001; Mabbott & Bisanz, 2008).  
Because low achievement is used as the sole criteria 
for dyscalculia classification, studies have argued that 
students with dyscalculia are simply delayed in their 
mathematical development, rather than qualitatively 
different (Geary & Hoard, 2005). The developmental 
lag theory suggests the same teaching methods 
should be effective and these students simply require 
additional time and exposure to standard instruction. 
Because this research is largely based on studies which 
have not employed a sufficient exclusionary definition 
to determine that the low achievement is due to a 
disability rather than social or environmental factors 
(Lewis & Fisher, 2016), we take issue with this theory and 
its resulting implications for instruction. 

In our studies we contribute to the growing body 
of work that suggests that qualitative differences 
in performance may be a productive approach to 
differentiate students with dyscalculia from students 
with low achievement due to other factors (e.g., 
Desoete & Roeyers, 2005; Mazzocco et al., 2008; 2013; 
Mazzocco & Devlin 2008). This suggests that a “more 
of the same” instructional approach will not work for 
these learners, because they have difficulties that 
are qualitatively different than their peers. We argue 
that the unconventional understandings identified in 
the Screener and Interview impact a student’s ability 
to access standard instruction and these students 
may require different kinds of instruction that takes 
these issues of access into account (Lewis, 2017).  At 
the heart of both unconventional understandings is a 
tendency to understand representations of quantities 
as representations of action (e.g., taking or halving). 
Students who rely upon these kinds of qualitatively 
different unconventional understandings require 
alternative forms of instruction that acknowledge and 
build upon these students’ unique resources (Lewis, 
2017). 

If used in practice, this Screener should just be used 
as a first step in a holistic evaluation of the student.  
All students may experience unconventional 
understandings when first learning how to use 
and translate between different mathematical 
representations (symbols, language, and pictorial; 
Viseu et al., 2021), so this Screener may not be effective 
with younger students first learning about fractions.  
For students with adequate opportunity to learn about 
fractions, persistent evidence of unconventional 
understandings may signify an issue of access.  
For students with suspected dyscalculia, multiple 
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assessments including observation, interview, and 
other nonstandard assessment are recommended 
to determine if the difficulties are due to dyscalculia 
or other factors (Mundia, 2017).  These kinds of 
nonstandardized assessments help educators identify 
unconventional understandings, issues of access, 
and suggest how to design alternative accessible 
instruction for that student (e.g., Lewis, 2017).  

Limitations

There are several limitations of the current study. 
First, this assessment was limited to exploring 
basic representation and interpretation of fraction 
quantities, which represent a narrow slice of fraction 
concepts and skills. Although some researchers might 
argue that the narrow topic domain is problematic 
because mathematics is componential in nature 
(Dowker, 2015), we argue that these unconventional 
fraction understandings are indicative of underlying 
number processing issues, representing quantities as 
actions, rather than objects (Sfard, 1991).  We do not 
claim that the Screener captures the myriad ways in 
which dyscalculia may manifest, however, students 
who have been identified using this screener have 
had similar unconventional understandings when 
working with integers (Lewis et al., 2020) and algebra 
(Lewis et al., 2022), suggesting the utility of identifying 
these kinds of unconventional understandings even 
in a narrow topic domain.  We do not propose the 
Screener to be a test for dyscalculia, instead these 
studies are intended to illustrate the potential utility 
of a general approach to drawing upon evidence of 
unconventional understandings identified in detailed 
analyses of extreme cases to design more sensitive 
screening tools. 

A second limitation of this study is that in study 2 the 
dyscalculia criteria were assessed only for students 
who were attending a school for students with 
language-based learning disabilities. It is possible 
that the students’ language-based learning disability 
did impact their understanding of mathematics.  
There is specific academic language associated 
with fractions (e.g., numerator, denominator; Bossé et 
al., 2019), and it is possible this created an additional 
barrier for students.  We cannot fully address issues 
of comorbidity that this participant population raises. 
However, in other preliminary work, there is some 
evidence that the Screener works to identify college-
aged students with dyscalculia with no other learning 
disabilities (Lewis et al., 2020). Future work should 
consider whether this kind of screener has utility for 
identifying students without other learning disabilities 
in a general population of students.

Third, although we documented unconventional 
understandings in the case study students, it is an 
open question what kind of instruction would be 

necessary to support their understanding of fractions 
as quantities.  Although research has demonstrated 
this kind of re-mediation with one of the adult students 
from the first case study (Lewis, 2017), more research is 
needed to determine if similar approaches would be 
effective for younger students.

One final limitation, is that due to the nature of the 
anonymous data collection for Study 1, we relied upon 
the teachers recording of test scores on the written 
assessments. These are the only data that were not 
double coded, and therefore, inadvertent errors could 
have been made. Because this was an ancillary point 
and not the main objective of the study, this potential 
for error in the data was not seen to be critical.

Conclusion

These studies established a proof-of-concept 
for designing a group administered screener by 
leveraging the qualitative differences identified 
in students with dyscalculia. This provides a 
novel approach to address the long-standing 
methodological issues facing the field with regards 
to identification and classification of students 
with dyscalculia. We believe that conceptualizing 
dyscalculia in terms of developmental difference 
rather than deficit has the potential to greatly 
impact both research and practice for students with 
dyscalculia. The screener identified students who 
understood standard tools for representing fractions 
(drawings, symbols) in ways that were unconventional 
and would render these standard mediational tools 
inaccessible. This suggests that instruction which 
relies on these standard representations would be 
inaccessible and that alternative more accessible 
instruction may need to be designed. Students who 
score high on this screener are worthy of further 
assessment to evaluate how to support their fractions 
learning and to determine if they have other issues of 
access across other topic domains.

1The terms “dyscalculia” and “mathematics learning 
disability” are used interchangeably in the field 
(Mazzocco, 2007). We use the former because this 
term is more commonly used internationally. We 
differentiate dyscalculia – which involves a difference 
in how the student processes numerical information 
– from students with mathematics learning difficulties 
who may have low achievement in mathematics due 
to a variety of social or environmental causes.

2Response-to-intervention approaches, which are 
sometimes used in schools to identify students who 
qualify for special education services, are not often 
used in research on dyscalculia because they lack 
specificity and methodological rigor.  A small number 
of studies (2%, based on a systematic literature review; 
Lewis & Fisher, 2016) have used growth curve analysis 
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to identify students who not only are low achieving, 
but also have slow growth, however this kind of 
Response-to-Intervention approach is not commonly 
used in the field.  

3It is worth noting that this pathologizing of human 
variation can be thought of as problematic, and this 
delineation of humans into “normal” and “abnormal” 
has its origins in the eugenics movement (e.g., Davis, 
2006). The point here is not to take a position on whether 
the category of dyscalculia is morally, ethically, 
practically, or politically appropriate, but to identify 
that when disability categories have been defined, it 
has often started with the close and careful clinical 
appraisal of individuals considered to be exceptional. 
In this study our goal is not to further pathologize 
human variation, but to better understand how 
cognitive differences may result in inaccessibility in 
mathematics.  By improving identification approaches 
we hope to (a) enable students with this disability to 
advocate and obtain access to accommodations to 
address the inaccessible mathematics context and 
(b) avoid inappropriately labeling students with low 
mathematics achievement as disabled. 

4Although the fractional complement for 3/4 is 1/4, 
we also classified instances where the student 
interpreted the fraction as unshaded/shaded (e.g., 
1/3), because their answer suggested that the student 
was attending to the fractional complement (the one 
unshaded part) as the focal quantity.   

References

Armstrong, B. E., & Larson, C. N. (1995). Students’ use of 
part-whole and direct comparison strategies 
for comparing partitioned rectangles. Journal 
for Research in Mathematics Education, 26, 
2–19. doi:10.2307/749225

American Psychiatric Association. (2013). Diagnostic 
and statistical manual of mental disorders 
(5th ed.). Arlington, VA: American Psychiatric 
Publishing.

Berch, D. B. (2005). Making sense of number sense: 
implications for children with mathematical 
disabilities. Journal of Learning Disabilities, 38(4), 
333–345. doi:10.1177/00222194050380040901

Bossé, M. J., Bayaga, A., Fountain, C., Lynch-Davis, K., 
Preston, R., & Adu-Gyamfi, K. (2019). Fraction 
learners: Assessing understanding through 
language acquisition. International Electronic 
Journal of Elementary Education, 11(2), 113–124. 
Retrieved from https://www.iejee.com/index.
php/IEJEE/article/view/649

Butterworth, B. (2003). Dyscalculia screener: 
Highlighting children with specific learning 
difficulties in mathematics. London: NFER 
Nelson.

Butterworth, B. (2005). The development of arithmetical 
abilities. Journal of Child Psychology and 
Psychiatry, 46(1), 3–18. doi:10.1111/j.1469-
7610.2004.00374.x

Compton, D. L., Fuchs, L. S., Fuchs, D., Lambert, W., & 
Hamlett, C. (2012). The Cognitive and academic 
profiles of reading and mathematics learning 
disabilities. Journal of Learning Disabilities, 45(1), 
79–95. doi:10.1177/0022219410393012

Davis, L. R. (2006). Constructing normalcy the bell 
curve, the novel, and the invention of the 
disabled body in the nineteenth century. In L. 
R. Davis (Ed.), The Disability Studies Reader (pp. 
3–16). New York, NY: Routledge.

Dehaene, S. (2011). The number sense: How the 
mind creates mathematics. New York: Oxford 
University Press.

Desoete, A., & Roeyers, H. (2005). Cognitive skills in 
mathematical problem solving in Grade 3. 
British Journal of Educational Psychology, 75(1), 
119–138. doi:10.1348/000709904X22287

Dowker, A. (2015).  Individual differences in arithmetical 
abilities: The componential nature of arithmetic. 
In R. Kadosh, & A. Dowker (Eds.). Oxford 
Handbook of Numerical Cognition. Oxford 
University Press.

Duane, D. D. (1979). Toward a definition of dyslexia: A 
summary of views. Bulletin of the Orton Society, 
29, 56–64. doi:10.1007/BF02653733

Empson, S. B. (1999). Equal sharing and shared meaning: 
The development of fraction concepts in a first-
grade classroom. Cognition and Instruction, 
17(3), 283–342.

Fletcher, J. M., Lyon, G. R., Fuchs, L. S., & Barnes, M. A. 
(2007). Learning disabilities: From identification 
to intervention. New York: Guilford Press.

Geary, D. C. (2004). Mathematics and learning 
disabilities. Journal of Learning Disabilities, 37(1), 
4–15. doi:10.1177/00222194040370010201

Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). 
Numerical and arithmetical cognition: A 
longitudinal study of process and concept 
deficits in children with learning disability. 
Journal of Experimental Child Psychology, 77(3), 
236–263. doi:10.1006/jecp.2000.2561



January 2022, Volume 14, Issue 3, 243-267

262

Geary, D. C., & Hoard, M. K. (2005). Learning disabilities 
in arithmetic and mathematics: Theoretical 
and empirical perspectives. In J. I. D. Campbell 
(Ed.), Handbook of mathematical cognition. 
(pp. 253–267). New York, NY US: Psychology 
Press.

Gifford, S., & Rockliffe, F. (2012). Mathematics difficulties: 
Does one approach fit all? Research in 
Mathematics Education, 14(1), 1–15. doi:10.1080/
14794802.2012.657436

Gonzalez, J. E. J., & Espinel, A. I. G. (2002). Strategy 
choice in solving arithmetic word problems: 
Are there differences between students with 
learning disabilities, G-V poor performance, 
and typical achievement students? Learning 
Disability Quarterly, 25(2), 113–122.

Gross-Tsur, V., Manor, O., & Shalev, R. S. (1996). 
Developmental dyscalculia: Prevalence 
and demographic features. Developmental 
Medicine & Child Neurology, 38(1), 25–33. 
doi:10.1111/j.1469-8749.1996.tb15029.x

Hanich, L. B., Jordan, N. C., Kaplan, D., & Dick, J. 
(2001). Performance across different areas 
of mathematical cognition in children with 
learning difficulties. Journal of Educational 
Psychology, 93(3), 615–626. doi:10.1037/0022-
0663.93.3.615

Hunting, R. P., & Davis, G. E. (1991). Dimensions of young 
children’s knowledge of the fraction of one 
half. In Early Fraction Learning. New York, NY: 
Springer Verlag.

Keeler, M. L., & Swanson, H. L. (2001). Does strategy 
knowledge influence working memory in 
children with mathematical disabilities? 
Journal of Learning Disabilities, 34(5), 418–434. 
doi:10.1177/002221940103400504

Knopik, V. S., Alarcón, M., & DeFries, J. C. (1997). 
Comorbidity of mathematics and reading 
deficits: Evidence for a genetic etiology. 
Behavior Genetics, 27(5), 447–453.

Lange, K. W., Reichl, S., Lange, K. M., Tucha, L., & 
Tucha, O. (2010). The history of attention deficit 
hyperactivity disorder. ADHD Attention Deficit 
and Hyperactivity Disorders, 2(4), 241–255. 
doi:10.1007/s12402-010-0045-8

Lewis, K. E. (2014).  Difference not deficit: 
Reconceptualizing mathematical learning 
disabilities. Journal for Research in Mathematics 
Education, 45(3), pp. 351-396.  

Lewis, K. E. (2016). Beyond error patterns: A sociocultural 
view of fraction comparison error patterns 
in students with mathematical learning 
disabilities. Learning Disability Quarterly 39(4), 
199-212. doi:10.1177/0731948716658063 

Lewis, K. E. (2017).  Designing a bridging discourse: Re-
mediation of a mathematical learning disability. 
Journal of the Learning Sciences, 26(2). 320-365. 
doi: 10.1080/10508406.2016.1256810

Lewis, K. E. & Fisher, M. B. (2016). Taking stock of 40 
years of research on mathematical learning 
disability: Methodological issues and future 
directions. Journal for Research in Mathematics 
Education, 47(4), 338-371. doi:10.5951/
jresematheduc.47.4.0338

Lewis, K. E. & Lynn, D. L. (2018). Access through 
compensation: Emancipatory view of a 
mathematics learning disability. Cognition & 
Instruction.

Lewis, K. E., Sweeney, G., Thompson, G. M., & Adler, R. 
(2020). Integer number sense and notation: A 
case study of a student with a mathematics 
learning disability. Journal of Mathematical 
Behavior. doi: 10.1016/j.jmathb.2020.100797

Lewis, K. E., Sweeney, G., Thompson, G. M., Adler, R. M., 
& Alhamad, K. (2022).  Dyscalculia in Algebra: A 
Case Study.  Manuscript accepted with minor 
revisions.

Lyon, G. R. (1995). Toward a definition of dyslexia. Annals 
of Dyslexia, 45, 3–27. doi:10.1007/BF02648210

Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A. (2003). A 
definition of dyslexia. Annals of Dyslexia, 53, 1–14.

Mabbott, D. J., & Bisanz, J. (2008). Computational skills, 
working memory, and conceptual knowledge 
in older children with mathematics learning 
disabilities. Journal of Learning Disabilities, 41(1), 
15–28. doi:10.1177/0022219407311003

Mazzocco, M. M. M. (2007). Defining and differentiating 
mathematical learning disabilities and 
difficulties. In D. B. Berch & M. M. M. Mazzocco 
(Eds.), Why is math so hard for some children? 
The nature and origins of mathematical 
learning difficulties and disabilities. (pp. 29–47). 
Baltimore, MD, US: Paul H Brookes Publishing.

Mazzocco, M. M. M. (2009). Mathematical learning 
disability in girls with Turner syndrome: A 
challenge to defining MLD and its subtypes. 
Developmental Disabilities Research Reviews, 
15(1), 35–44. doi:10.1002/ddrr.50



263

Screening for Characteristics of Dyscalculia: Identifying Unconventional Fraction Understandings / Lewis, Thompson & Tov

Mazzocco, M. M. M., & Devlin, K. T. (2008). Parts and 
“holes”: Gaps in rational number sense among 
children with vs. without mathematical learning 
disabilities. Developmental Science, 11(5), 681–
691. doi:10.1111/j.1467-7687.2008.00717.x

Mazzocco, M. M. M., Devlin, K. T., & McKenney, S. J. (2008). 
Is it a fact? Timed arithmetic performance of 
children with mathematical learning disabilities 
(MLD) varies as a function of how MLD is defined. 
Developmental Neuropsychology, 33(3), 318–
344. doi:10.1080/87565640801982403

Mazzocco, M. M. M., & Myers, G. F. (2003). Complexities 
in identifying and defining mathematics 
learning disability in the primary school-age 
years. Annals of Dyslexia, 53, 218–253. doi:10.1007/
s11881-003-0011-7

Mazzocco, M. M. M., Myers, G. F., Lewis, K. E., Hanich, 
L. B., & Murphy, M. M. (2013). Limited knowledge 
of fraction representations differentiates middle 
school students with mathematics learning 
disability (dyscalculia) versus low mathematics 
achievement. Journal of Experimental Child 
Psychology, 115(2), 371–387. doi:10.1016/j.
jecp.2013.01.005

Meert, G., Grégoire, J., & Noël, M.-P. (2009). Rational 
numbers: Componential versus holistic 
representation of fractions in a magnitude 
comparison task. The Quarterly Journal of 
Experimental Psychology, 62(8), 1598–1616. 
https://doi.org/10.1080/17470210802511162

Mejias, S., Grégoire, J., & Noël, M.-P. (2012). Numerical 
estimation in adults with and without 
developmental dyscalculia. Learning and 
Individual Differences, 22(1), 164–170. https://doi.
org/10.1016/j.lindif.2011.09.013

Messenger, C., Emerson, J., & Bird, R. (2007). Dyscalculia 
in Harrow. Mathematics Teaching Incorporating 
Micromath, (204), 37–39. 

Mundia, L. (2017). The assessment of math learning 
difficulties in a primary grade-4 child with high 
support needs: Mixed methods approach. 
International Electronic Journal of Elementary 
Education, 4(2), 347–366. Retrieved from https://
www.iejee.com/index.php/IEJEE/article/
view/203

Mussolin, C., Mejias, S., & Noël, M.-P. (2010). Symbolic 
and nonsymbolic number comparison 
in children with and without dyscalculia. 
Cognition, 115(1), 10–25. https://doi.org/10.1016/j.
cognition.2009.10.006

National Governors Association Center for Best 
Practices & Council of Chief State School 
Officers. (2010). Common Core State Standards 
for Mathematics. Washington, DC: Author. 
Retrieved from http://www.corestandards.org/
assets/CCSSI_Math%20Standards.pdf

Ni, Y. (2001). Semantic domains of rational numbers 
and the acquisition of fraction equivalence. 
Contemporary Educational Psychology, 26(3), 
400–417. doi:10.1006/ceps.2000.1072

Price, G. R., & Ansari, D. (2013). Dyscalculia: Characteristics, 
causes, and treatments. Numeracy: Advancing 
Education in Quantitative Literacy, 6(1), 1–16.  
doi:10.5038/1936-4660.6.1.2

Schneider, M., & Siegler, R. S. (2010). Representations 
of the magnitudes of fractions. Journal of 
Experimental Psychology: Human Perception 
and Performance, 36(5), 1227-1238. doi:10.1037/
a0018170

Schrank, F. A., Mather, N., & McGrew, K. S. (2014). 
Woodcock-Johnson IV Tests of Achievement. 
Rolling Meadows, IL: Riverside.

Sfard, A. (1991). On the dual nature of mathematical 
conceptions: reflections on processes and 
objects as different sides of the same coin. 
Educational Studies in Mathematics, 22, 1–36. 
doi:10.1007/BF00s302715

Shalev, R. S. (2007). Prevalence of developmental 
dyscalculia. In D. B. Berch & M. M. M. Mazzocco 
(Eds.), Why is math so hard for some children? 
The nature and origins of mathematical 
learning difficulties and disabilities (pp. 49–60). 
Baltimore, MD: Paul H. Brookes.

Steffe, L. P. (2010). The partitioning and fraction 
schemes.  In L. P. Steffe & J. Olive (Eds.), Children’s 
Fractional Knowledge (pp. 315-340). New York, 
NY: Springer

Verhoeff, B. (2013). Autism in flux: A history of the concept 
from Leo Kanner to DSM-5. History of Psychiatry, 
24(4), 442–458. doi:10.1177/0957154X13500584

Viseu, F., Pires, A. L., Menezes, L., & Costa, A. M. (2021). 
Semiotic representations in the learning of 
rational numbers by 2nd grade Portuguese 
students. International Electronic Journal of 
Elementary Education, 13(5), 611–624. Retrieved 
from https://www.iejee.com/index.php/IEJEE/
article/view/1453



January 2022, Volume 14, Issue 3, 243-267

264

Vygotsky, L. S. (1981). The genesis of higher mental 
functions. In J. V. Wertsch (Ed.), The Concept 
of Activity in Soviet Psychology (pp. 144–188). 
Armonk, NY: M. E. Sharpe, Inc.,.

Vygotsky, L. S. (1929/1993). Introduction: Fundamentals 
problems of defectology. In R. W. Rieber & 
A. S. Carton (Eds.), The collected works of L. 
S. Vygotsky, Volume 2: The fundamentals of 
defectology. London, NY: Plenum Press.

Wilkins, J. L. M., & Norton, A. (2011). The splitting loope. 
Journal for Research in Mathematics Education, 
42(4), 386–416.

Wilson, A. J., Andrewes, S. G., Struthers, H., Rowe, V. M., 
Bogdanovic, R., & Waldie, K. E. (2015). Dyscalculia 
and dyslexia in adults: Cognitive bases of 
comorbidity. Learning & Individual Differences, 
37, 118–132. doi:10.1016/j.lindif.2014.11.017

Wolff, S. (2004). The history of autism. European 
Child & Adolescent Psychiatry, 13(4), 201–208. 
doi:10.1007/s00787-004-0363-5



265

Screening for Characteristics of Dyscalculia: Identifying Unconventional Fraction Understandings / Lewis, Thompson & Tov

Appendix A
Questions and scoring criteria for the Screener

# Question Correctness Unconventional Points Not Unconventional

1
Draw a picture of  

1 point for a canonical 

drawing or representa-

tion of ½ (i.e., area mod-

el, number line, decimal, 

percent, or semicircle)

1 unconventional point 

for a drawing of a shape 

partitioned into two 

parts but without shad-

ing or labeling of either 

part. 

A drawing of a shape 

partitioned into two 

with one of the parts 

labeled “½”

2
Draw another way to show 

(same as above) (same as above) (same as above)

3
Draw a picture of 

1 point for a canonical 

representation of 3/5 

(e.g., area model, num-

ber line, or discrete set).

1 unconventional point 

for an area model or 

discrete set drawing of 

2/5 (i.e., 3 out of 5 parts 

unshaded). 

Partitioning issues, 

because students have 

difficulty accurately 

partitioning into fifths. 

4
Draw a picture of 

1 point for a canonical 

representation of 1 5/8 

(e.g., area model, num-

ber line, or discrete set).

1 unconventional point 

for a representation 

where the whole is not 

shaded or labeled.  

A drawing where the 

wholes are different 

sizes.

5 Circle all the pictures that you think 

show ? (correct answers circled be-

low)

(adapted from Ni, 2001)

1 point for each correctly 

circled canonical rep-

resentation of 1/2 (see 

circled answers)

-1 point for each incor-

rect answer. 

1 unconventional point 

for circling the halved 

circle with no shading.

6
Which is more  or ? (you can draw 

pictures to help you)

Explain your answer:

1 point for correct answer 

(1/6) (explanations are 

used to disambiguate 

student answer, not 

required)

1 unconventional point 

for incorrect answer (1/8) 

with an explanation 

and/or drawing that 

focuses on the unshaded 

amount (e.g., more left in 

the 1/8 drawing). 

A written answer that 

states that 1/8 is bigger 

than 1/6 because 8 is 

bigger than 6.  

7
Which is more  or ?

Explain your answer:

1 point for correct answer 

(5/8) (explanations are 

used to disambiguate 

student answer, not 

required)

1 unconventional point 

for an incorrect answer 

(2/8) with an explanation 

and/or drawing that 

focuses on the fractional 

complement (e.g., 6/8 

unshaded, 3/8 unshad-

ed).

Answer of 2/8 with no 

explanation or draw-

ing.
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8 1 point for correct answer 

(4/5).

1 unconventional point 

for answers where the 

numerator is the number 

of parts not shaded (e.g., 

1/5 or 1/4). 

Answers where student 

has miscounted the 

number of pieces, (e.g., 

5/6)

9 1 point for correct answer 

(8/10 or 4/5).  

1 unconventional point 

for answers where the 

numerator is the number 

of parts not shaded (e.g., 

2/10, 2/8, 1/5 or 1/4). 

Answers where student 

has miscounted the 

number of pieces, (e.g., 

10/12).

10

(adapted from Armstrong & Larson, 1995)

1 point for correct answer 

(A) (explanations are 

used to disambiguate 

student answer, not 

required)

1 unconventional point 

for selecting B with an 

explanation focusing 

on the number “left” or 

unshaded amount.

An incorrect answer 

(B or C) with either no 

explanation or an ex-

planation that suggests 

miscounting, (e.g., “C 

because 3/5=3/5”)

11

(adapted from Armstrong & Larson, 1995)

1 point for correct answer 

(A) (explanations are 

used to disambiguate 

student answer, not 

required)

1 unconventional point 

for selecting B with an 

explanation focusing 

on the number “left” or 

unshaded amount.

An incorrect answer 

(B or C) with either no 

explanation or an ex-

planation that suggests 

miscounting, (e.g., “C 

because 3/5=3/5”)

12
Solve the problem  using 

pictures.

1 point for correct answer 

(3/4).  Student not re-

quired to draw pictures. 

1 unconventional point 

for (a) answers that 

include a drawing of ½ 

without shading or (b) 

an answer of 2/4 (un-

shaded/shaded) with 

canonical area models 

of ½ and ¼. 

An incorrect answer of 

1/6 or 2/6 are not con-

sidered unconventional 

by themselves.  

13 What fraction does this picture show? 1 point for correct answer 

(e.g., 8/10 or 4/5).

1 unconventional point 

for an answers that 

determine the numera-

tor based on the missing 

pieces (e.g., 2/10, 2/8, 1/5, 

1/10, 1/8).

An incorrect answer in 

which the student has 

miscounted (e.g., 7/10 

or 9/10).

Global coding: Any time the student interpreted a representation of as the fractional complement (e.g., interpreting 2/3 as 1/3) the stu-

dent got an unconventional point for that problem.  
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Appendix B
Background Interview Questions

Academic Background:
- What is your favorite subject in school?
- What do you like about it?
- What is your least favorite subject?
- What don’t you like about it?
- What do you think about math? What do you like about it? What don’t you like about it?

Nature of the student’s difficulty:
- What are you working on in math right now?
- Can you give me an example?
- What about learning and/or doing math was hard for you? Can you give an example?
- What about learning and/or doing math was easy for you? Can you give an example?

Effort:
- Do you get a lot of homework in math?
- When do you do your homework?
- Do you tend to do all your homework and turn it in?

Resources Questions:
- If you get stuck on a problem, what do you do?
- Who do you ask for help, if you need it?

Language Fluency:
- What language do you tend to speak at home?


