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Abstract

This study begins by connecting semantic elaboration with conceptual understanding and syntactic elaboration with proce-
dural understanding in the context of fractions. Through case studies and discourse analysis, the work and communication 
of students in fourth through sixth grade is analyzed to determine the extent of their semantic and syntactic elaboration 
regarding fractions and fraction operations. Findings are that, while some students emphasized one form of elaboration over 
the other, some students demonstrated use of both forms of elaboration. Indeed, it is wondered if semantic and syntactic 
elaboration should be seen as more complementary than adversarial.
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Introduction

While researchers continue to examine students’ learning 
of fractions (Kara & Incikabı, 2018; Hyde, Khanum, & Spelke, 
2014; Inglis & Gilmore, 2013; Jacob & Nieder, 2009; Meert, 
Grégoire, & Noël, 2009; Murray, Olivier, & Human, 1996), stu-
dents continue to possess limited understanding of fractions 
and often remain unable to adequately communicate ideas 
associated with fractions. Meert, Grégoire, and Noël (2009) 
and Murray, Olivier, and Human (1996) report specific chal-
lenges students encounter, including a lack of conceptual 
understanding of equality. These challenges lead to students 
incorrectly performing arithmetic operations on fraction and 
developing their own incorrect arithmetic heuristics. 

Although semantics and syntax have received considerable 
attention in student mathematical communication, some 
opine that the limited consideration of student fraction un-
derstanding through these lenses is probably due to teachers 
themselves possessing insufficient understanding of seman-
tics and syntax in the context of fractions (Meert, Grégoire, 
& Noël, 2009; Opfer & DeVries, 2008; Sasanguie et al., 2013). 
However, some researchers recognize that contextualizing 
fraction learning in real-world problems helps to demonst-
rate the semantic structure of fractions and leads to greater 
learning (Leibovich & Ansari 2016; Newstead & Murray, 1998; 
Opfer & DeVries, 2008). It can be inferred that a number of 
factors can contribute to students gaining deeper semantic 
understanding of fractions. Understanding semantics and 
syntax may be the cornerstone to unpacking the difficulties 
learners encounter when learning, and performing operati-
ons on, fractions. 

This study suggests that students could be aided in their lear-
ning of the principles of fractions by understanding semanti-
cs, syntax, and their relationships. The current research be-
gins an initial dialog defining student use of semantic and 
syntactic elaborations in the context of fraction arithmetic 
and understanding. 

Literature Review

Investigating the role of semantics and syntax in respect to 
language learning is far from novel and considering the ro-
les of semantics and syntax in the context of mathematical 
communication is becoming increasingly in vogue (e.g., Me-
ert, Grégoire, & Noël, 2009; Opfer & DeVries, 2008; Sasanguie 
et al., 2013). In the context of mathematics, particularly with 
fractions, many have ascribed semantics with connecting 
mathematics to real-world scenarios (e.g., Leibovich & Ansari 
2016; Opfer & DeVries, 2008). In this current investigation, we 
will extend upon this notion and define particular fractional 
arithmetic and understanding as either semantic or syntac-
tic. 

Throughout the 60s, 70s, and even 90s, significant work in-
vestigated students’ language of fractions (Halliday, 1975, 
1993; Halliday, McIntosh, & Strevens, 1964). While these stu-
dies extended the literature regarding students’ use of lan-
guage in mathematics, they led to inconsistencies in defining 
and identifying students’ syntactic and semantic interaction 
with mathematics in general and fractions in particular. Sub-
sequently, various themes have emerged in unpacking stu-
dents semantic and syntactic interaction with mathematics. 
These include: semantic and syntactic elaborations; unders-
tanding and communication of fractions and semantics, syn-
tax, and sequencing. 

Semantic (Global and Conceptual) and Syntactic (Local and Pro-
cedural) Interactions 

Kaput (1987a, 1978b) identifies two types of interactions a 
person can have with a mathematical representation: synta-
ctic elaboration (interacting with a representation by direct-
ly manipulating the symbols in the representations without 
reference to the meaning of the idea represented) and se-
mantic elaboration (interacting with a representation based 
on the features of the ideas represented, rather than the 
symbols themselves). In the context of representational in-

Semantic and Syntactic Fraction 
Understanding

25 September 2018

10 December 2018

07 January 2019

a,*Corresponding Author: University of Zululand, Department of Mathematics, Science & Technology Education (MSTE).  E-mail: BayagaA@unizulu.
ac.za, Phone: +27 (0) 35 902 6809, South Africa.
b Appalachian State University, Department of Mathematical Sciences, Boone, NC, 28608-2092, USA. E-mail: bossemj@appstate.edu 
Office Phone: (828) 262-2862,

Anass Bayagaa, Michael J. Bosséb



136

December 2018, Volume 11, Issue 2, 135-142

terpretation, syntactic elaboration is akin to interpreting 
an expression by considering local characteristics of the 
expression and semantic elaboration as connecting the 
representation more globally to overarching ideas (Duval, 
2006, Kaput, 1987a, 1987b). For example, in respect to a 
fraction such as 2/3, a student may syntactically focus on 
the local attributes of the 2, the 3, or the division symbol 
or operation without semantically connecting 2/3 to the 
global notion of rational numbers. 

In a parallel manner, while local, syntactic interactions 
can be equated to instrumental or procedural understan-
ding (using processes and algorithms to produce results) 
of mathematics, global semantic interactions hold simi-
larities with conceptual understanding (the ability to see 
interconnections among ideas) (Hallett, Nunes, & Bryant, 
2010). While some have recognized elementary students’ 
difficulties with fractions concepts (e.g., Braithwaite, Pyke, 
& Siegler, 2017; Bulgar, 2003; Gabriel et al., 2013; Siegler 
et al., 2011; Tirosh, 2000; Van Steenbrugge, Lesage, Val-
cke, & Desoete, 2014), some equate this to students pri-
marily possessing procedural knowledge of fractions and 
operations (e.g., Byrnes & Wasik, 1991; Kerslake, 1986; 
Rittle-Johnson, Siegler, & Alibali, 2001). Interestingly, while 
Kerslake (1986) has determined that some students can 
have success with some fraction operations using prima-
rily procedural knowledge, Byrnes and Wasik (1991) con-
tend that conceptual knowledge regarding fractions is the 
prerequisite and Hallett, Nunes, and Bryant (2010) suggest 
that some students rely more on procedural understan-
ding and others on conceptual understanding. However, 
when students demonstrate lesser conceptual understan-
ding and greater procedural understanding, this may limit 
their understanding of fractions (Van Steenbrugge et al., 
2014) and lead to the development of misunderstandings 
(Hallett Nunes, & Bryant, 2010; Kerslake, 1986).   

Communication and Procedural and Conceptual Misunders-
tanding Fractions

Based on whole number bias and other misconceptions, 
students’ understanding and communication of fractions 
continues to be investigated (e.g., Bartelet, Ansari, Vaes-
sen, & Blomert, 2014; DeWolf, Rapp, Bassok, & Holyoak, 
2014; Iuculano & Butterworth, 2011; Kallai & Tzelgov, 
2009; Lyons, Price, Vaessen, Blomert, & Ansari1, 2014; Me-
ert, Grégoire, & Noël, 2009; Opfer & DeVries, 2008; Schne-
ider & Siegler, 2010). Research reveals that some student 
difficulties with fractions are born from misunderstandin-
gs with natural numbers (e.g., Siegler, Thompson, & Sch-
neider, 2011; Stafylidou & Vosniadou, 2004; Van Steenbru-
gge et al., 2014). This is because, children’s knowledge of 
natural numbers can inhibit later fraction learning (Siegler 
et al., 2011). The primary reason may be due in part to 
the fact that fractions are inconsistent with the counting 
principles, counting-based algorithms, and numerical or-
dering applicable to natural numbers (Stafylidou & Vosni-
adou, 2004). This results in whole number bias leading to 
misconceptions (Van Steenbrugge et al., 2014). Additional-
ly, the multi-dimensional nature of the fraction construct 
also leads to student difficulties (e.g., Charalambous & 
Pitta-Pantazi, 2007; Kieren, 1976; Van Steenbrugge et al., 
2014). To overcome this, fractions must be considered th-
rough interconnected subconstructs (i.e., ratio, operator, 
quotient, and measure) (Kieren, 1976) and the part-whole 
construct (Behr, Lesh, Post, & Silver, 1983), all defined by 
Charalambous and Pitta-Pantazi (2007) and Van Steenbru-
gge et al. (2014).

Connecting to previous discussions of procedural (local 
and syntactic) and conceptual (global and semantic) un-
derstanding, fraction misunderstandings are generally 
classified as either procedural or conceptual. Whole num-
ber bias, incorrect fraction operation strategies, and divi-

sion of two fractions are usually classified as procedural 
fraction misunderstanding and fraction equivalence and 
abuses of the previously mentioned subconstructs are 
classified as conceptual misunderstandings (Braithwaite 
et al., 2017; Bulgar, 2003; Charalambous & Pitta-Pantazi, 
2007; Gabriel et al., 2013; Siegler et al., 2011; Tirosh, 2000; 
Van Steenbrugge et al., 2014). 

Misconceptions emanating from students’ incorrect intu-
itions and informal experiences has also been one factor 
why learning of fractions decimals is challenging. For ins-
tance, Newstead and Murray (1998) argue that students’ 
difficulties with division by a fraction may be due to limita-
tions arising from their own intuitions and real-life expe-
riences. They also argue that, when division by fractions 
decontextualized, the result may conflict with students’ 
previously held notions as it can produce a quotient grea-
ter than either the dividend or the divisor. Altogether, tea-
chers should expose learners to a variety of situations and 
contexts regarding division.

Altogether, the literature seems to indicate that who-
le-number schemes can be somewhat unsuitable for 
fraction conceptualization and that children’s limited un-
derstanding of fractions may be born from their limited 
ability to communicate (interpret and produce) linguisti-
cally posed mathematical ideas. For instance, when there 
is a seeming lack of understanding of equality of fractions, 
there seems to commensurately be a limited ability to 
communicate ideas associated with equivalent fractions 
(Kolkman, Kroesbergen, & Leseman, 2013; Leibovich & An-
sari 2016; Meert, Grégoire, & Noël, 2009; Opfer & DeVries, 
2008; Sasanguie, et al., 2013).

Semantics, Syntax, and Poor Sequencing

Since the early 1990s, numerous studies suggest that the-
re seem to be different reasons why children find it dif-
ficult to learn fractions. The work of Baroody and Hume 
(1991), Streefland (1991) and D’Ambrosio and Mewborn 
(1994) have chronicled the problems as poor sequencing 
and limited variety of fractions. Thus, limited content in 
the form of teaching only halves and quarters and the use 
of pre–partitioned manipulatives, could be contributory 
factors. Some studies also demonstrate that semantic 
alignment largely correlates with the learning of fractions 
(DeWolf et al., 2014; Kallai & Tzelgov, 2009; Park & Bran-
non, 2013, 2014; Sasanguie et al, 2013; Schulze, 2016; 
Schleppegrell, 2007; Thwaite, 2015; Turkan, de Oliveira, 
Lee, & Phelps, 2014; van Lier & Walqui, 2012). Both child-
ren and adults find it easier and more natural to solve 
or construct semantically-aligned rather than misaligned 
word problems (DeWolf et al., 2014). Some studies have 
explored grades four and six students’ concept and opera-
tion understanding through success and misconceptions 
(DeWolf et al., 2014; Kallai & Tzelgov, 2009; Park & Bran-
non, 2013; Schulze, 2016; Schleppegrell, 2007; van Lier & 
Walqui, 2012). Summarily, research suggests that entities 
in a problem situation evoke semantic relations. 

Objective of the study

Thus far, there is sufficient reason to suggest that recogni-
zing students’ semantic versus syntactic understanding of 
fractions may be key in unraveling the difficulties in lear-
ning fractions. Contextualized in this recognition, the cur-
rent study investigates student work and communication 
regarding fractions and arithmetic operations on fractions 
and seeks to interpret their understanding from the lens 
of semantic and syntactic understanding of fractions. 

Methodology

In order to gain insight into student understanding of fra-
ctions in the form of semantic versus syntactic understan-



Semantic and Syntactic Fraction/ Bayaga & Bossé

137

dings, the research methodology employed in this study 
are case studies and discourse analysis (Bogden & Biklen, 
2003; Creswell, 2003; Goldin, 2000; Miles & Huberman, 
1994; Wodak & Meyer, 2009). This study sought to explore, 
fourth-, fifth-, sixth-, and seventh-grade student understa-
ting of fractions and decimals through the lens of semantic 
(global and conceptual) and syntactic (local and procedu-
ral) elaboration (Braithwaite, Pyke, & Siegler, 2017; Bulgar, 
2003; Byrnes & Wasik, 1991; Gabriel et al., 2013; Kaput, 
1987a, 1987b; Kerslake, 1986; Hallett, Nunes, & Bryant, 
2010; Rittle-Johnson, Siegler, & Alibali, 2001; Siegler et al., 
2011; Tirosh, 2000; Van Steenbrugge, et al., 2014). Seven 
distinct scenarios of student-student or student-teacher 
interactions regarding various contexts of fraction and 
decimal understanding were investigated. These included: 

Scenario 1: Sixth grade student and teacher (ten years te-
aching with 4 years in this grade with a master’s degree in 
education) discussing fraction simplification.

Scenario 2: Fourth grade student and teacher (five years 
teaching in the same grade) comparing fraction magnitu-
de.

Scenario 3:  Fifth grade student and teacher (seven years 
teaching all in the same grade with a master’s degree in 
education) discussing equivalent fractions equal to 1. 

Scenario 4: Sixth grade student and teacher (in her first 
year if teaching) discussing a technique for fraction addi-
tion.

Scenario 5: Sixth grade student and teacher (thirteen ye-
ars teaching with seven years in this grade) discussing the 
lowest form of a fraction.

Scenario 6: Four seventh-grade students discussing simp-
lifying fractions.

The case study aspect focused on participants who were 
students in various classrooms in the southeastern part of 
the United States. The discourse analysis focused on each 
transcript which was a subset of a larger set of transcrip-
ts recording the interactions of students and teachers in 
the context of fractions and decimals.  Each recorded in-
teraction took place in the students’ and their respective 
teachers’ regular classroom setting in the southeastern 
United States. These schools and teachers were selected 
singularly for their convenience to the researcher and par-
ticipating teachers. Videotaping occurred on days when 
the teachers were anticipating covering the respective fra-
ction and decimal topics. 

To unpack meaning from the transcripts (Creswell, 2003), 
the data was systematically analyzed (Bogden & Biklen, 
2003). Videotapes capturing student work and communi-
cation were transcribed. Discourse analysis (Wodak, 2009; 
Wodak & Meyer, 2009) was employed to investigate stu-
dent understanding; this was completed both by individu-
al researchers and then again by the team of researchers. 
The themes of semantic and syntactic elaborations were 
characterized and behaviors connoting such elaborations 
were coded in the transcripts. Check-coding (Miles & Hu-
berman, 1994) was employed (the coding of each individu-
al researcher was considered by the team of researchers, 
differences were reconciled, and refinements were made) 
to allow researchers to reach consensus on the analysis of 
all transcripts. 

Results and Initial Analyses

In this section, we provide portions of transcripts together 
within initial analysis of semantic versus syntactic elabora-
tion through seven scenarios of student-teacher and stu-
dent-student interactions. 

Scenario 1: Sixth grade student and teacher (ten years teac-
hing with 4 years in this grade with a master’s degree in edu-
cation) discussing fraction simplification.

Student: A ratio is just a fraction of fractions.

Teacher: What do you mean?

Student: Well, a fraction is a part to a whole. And a ratio 
is a part to a part.

Teacher: Yes?  Can you give me an example?

Student: Well let’s say that we have 5 boys and 7 girls in 
a class. The ratio of boys to girls is 5 to 7. But that is a part to 
a part.

Teacher: Right? But, then, how does that make it a frac-
tion of fractions?

Student: Well,   of the class is boys and   of the class is 
girls. These are both part to whole fractions. So, if I set them 
up as a fraction of fractions, I get:

Teacher: So, you get the fraction ?

Student: Well, kinda. I get the ratio  or 5 to 7.

Teacher: But is that a ratio or a fraction?  

Student: It is a ratio.

Teacher: I see what you mean that a ratio is a fraction of 
fractions. But you are starting with fraction and performing 
operations on fractions. How does it become a ratio?

Student: I’m not really sure. But it does work.

Teacher: Where did you see this idea?

Student: I came up with it myself.

This student’s articulations seem to demonstrate none 
of the previously mentioned fraction misunderstandings 
classified as either semantic (conceptual) or syntactic (pro-
cedural) (Braithwaite et al., 2017; Bulgar, 2003; Charalam-
bous & Pitta-Pantazi, 2007; Gabriel et al., 2013; Siegler et 
al., 2011; Tirosh, 2000; Van Steenbrugge et al., 2014). Whi-
le the respondent’s interpretation of a ratio as a fraction 
of fractions is somewhat irregular, respondent demons-
trates a sufficiently sophisticated understanding of frac-
tions and ratios that respondent interconnects the ideas 
without having previously received instruction regarding 
such. Indeed, Kieren (1976) and others have noted that 
recognizing fractions through the subconstruct of ratio 
is a component of conceptually understanding fractions. 
Thus, this student seems to primarily demonstrate se-
mantic elaboration regarding fractions and decimals. 

Scenario 2: Fourth grade student and teacher (five years teac-
hing in the same grade) comparing fraction magnitude.

Teacher: Which is greater, , , or ? And why? 

Student: Well, has the biggest top number?

Teacher: So, is  the greatest number? Is that all that mat-
ters?

Student: No.  has the smallest bottom number.  
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Teacher: So is  the greatest number?

Student:  I think that I want the number with the biggest top 
and the smallest bottom. But that is two different numbers. I 

know that   is bigger than. And I know that  is bigger than 

. But, I’m stuck between  and .

Teacher: Do you have any ideas on how to figure that out?

Student: I could make pictures.

Teacher: Ok.

Student: (Show circles shaded of  and .) I think that is 

a little bit bigger. But not much.  So, must be the biggest.

This student attempts to compare the magnitude (or me-
asurement) of fractions, which could be a semantic task, 
by syntactically isolating the numerators and then the de-
nominators and not semantically considering the entirety 
of the fractional representation. The respondent does 
not seem to consider the fraction as a ratio, operator, 
quotient, and measure (Kieren, 1976), or as a part-whole 
construct (Behr et al., 1983), all associated with semantic, 
conceptual understanding (Charalambous & Pitta-Pantazi, 
2007; Van Steenbrugge et al., 2014). However, respondent 
work does seem to exemplify whole number bias, accep-
ted as syntactic, procedural understanding.

Scenario 3:  Fifth grade student and teacher (seven years tea-
ching all in the same grade with a master’s degree in educati-
on) discussing equivalent fractions equal to 1.

Teacher: Is  greater than ?

Student: Yes.

Teacher: Why?

Student: 31 is bigger than 9.

Teacher: But it is not 31 and 9. It is  and .

Student: I know.

Teacher: So, what are the parts and the wholes?

Student: For , the whole is 31 and the parts are 31.

For , the whole is 9 and the parts are 9.

Teacher: So, for  you have all the parts of the whole and 

for  you have all the parts of the whole. So, in both 

cases, you are using all of the whole.

Student: But there is more of the whole for .

Teacher: But aren’t each of the 31 parts of the whole smaller 
than each of the 9 parts of the whole?

Student: Yes. 31 parts would be very small.

Teacher: But you would be using all of them.

Student: The 9 pieces would each be bigger.

Teacher: And, again, you would be using all of them.

Student: But 31 parts is still a lot more than 9 parts. So, 
has to be bigger.

This student seems to syntactically employ whole number 
bias and measurement, as she focuses on the numerator 
of each fraction rather than on the semantic constructs 
of ratio, operator, and quotient (Behr et al., 1983; Chara-
lambous & Pitta-Pantazi, 2007; Kieren, 1976; van Steenb-
rugge et al, 2014). However, respondent communication 
demonstrates some incomplete notions of the part-whole 
construct and fraction equivalence, two ideas common-
ly recognized as semantic in nature. Altogether, then, 
respondent seems to ineffectively employ both syntactic 
elaborations and, to the extent that it is attempted, two 
dimensions of semantic elaborations. 

Scenario 4: Sixth grade student and teacher (in her first year if 
teaching) discussing a technique for fraction addition.

Student: Callie and me got the same answer, but we did it 
different ways.

Teacher: For what problem?

Student: We did . We both got -1 for an answer.

Teacher: Let’s see how you did it.

Student: Callie did:

I did: . We both got -1.

Teacher: Callie’s technique is correct. Your technique is wrong.

Student: But we got the same answer.

Teacher: I think that you just got luck with your example. Most 
of the time, it won’t work correctly.

Student: But if it works here, maybe it works on all kinds of 
problems. And it’s easier to just add the tops and bottoms.

Teacher: But that does not always work. In fact, it rarely 
works.

Student: But maybe we should try it first and see if it works.

Teacher: But, if you try your way first and then have to try 
Callie’s way to see if the answers are the same, this doubles 
your work. Just do it Callie’s way.

Student: But my way is easier.

Teacher: Just do it Callie’s way.

In the context of this brief student-teacher interaction, we 
reluctantly avoid commenting on the teacher’s articulati-
ons and singularly focus on the student’s communication.  
This student demonstrates whole number bias in the te-
chnique she employs toward incorrect fraction arithmetic 
strategies; these are both recognized as a syntactic (pro-
cedural) misunderstandings (Braithwaite, Pyke, & Siegler, 
2017; Bulgar, 2003; Charalambous & Pitta-Pantazi, 2007; 
Gabriel et al., 2013; Siegler, Thompson, & Schneider, 2011; 
Tirosh, 2000; Van Steenbrugge et al., 2014). Indeed, little 
semantic elaboration can be recognized in her work apart 
from some semblance of recognizing the notion of expec-
ted equality or equivalence.

Scenario 5: Sixth grade student and teacher (thirteen years 
teaching with seven years in this grade) discussing the lowest 
form of a fraction.

Teacher: How can you tell if a fraction is simplified?

Student: When the numerator and denominator are as small 
as possible.
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Teacher: The numbers 3 and 6 are pretty small. Is  simp-
lified?

Student: No, it can be smaller.

Teacher: What can be smaller?

Student:  can be made smaller to .  

Teacher: Is  less than ?

Student: No. It’s not less than. They are equal. Just the top and 
bottom are smaller.

Teacher: Ok. Can we make  into an equivalent fraction 

with a numerator and denominator less than 1 and 2?

Student: I don’t think so.

Teacher: Which is less, 1 or -1?

Student: -1.

Teacher: Which is less, 2 or -2?

Student: -2.

Teacher: So,  must be more simplified than ?

Student: No. We don’t do that.

Teacher: I know that we don’t usually do that. But I am won-
dering if my argument is sound.

Student: Since, -1 is smaller than 1 and -2 is smaller than 

2, I guess that  can be more simplified than . But we 

don’t do that.

Teacher: Then  must be more simplified and  must 

be more simplified and  must be more simplified.

Student: That is silly. The numbers are getting bigger.

Teacher: Are they getting “bigger”?

Student: No, they are getting smaller, but looking bigger. So-
mething is wrong.

Teacher: Well, let’s go in another direction. Which is 
smaller, 1 or 0.1?

Student: 0.1.

Teacher: Which is smaller, 2 or 0.2?

Student: 0.2.

Teacher: Then  must be more simplified than .

Student: We don’t do that either. We don’t put decimals in 
fractions.

Teacher: I agree that this is quite unusual. But is  more 

simplified than ?

Student: Since 1÷10 = 0.1 and 2÷10 = 0.2, I think that =

.

Teacher: The question is not if they are equal. The question is 
whether the fraction with the smaller numerator and deno-
minator is more simplified.

Student: If we use “smaller”, then it is more simplified. But 
that isn’t right.

Teacher: What isn’t right?

Student: I think that the word “smaller” is causing the prob-
lem.

This student demonstrates unwavering semantic unders-
tanding of fraction equivalence, even when challenged 
with unusual questions. His communication reveals no 
commonly anticipated evidence of syntactic elaboration 
apart, possibly, from using problematic verbiage such as 
“smaller” and “bigger” numbers in respect to simplifying 
fractions and whole number bias in preferring natural 
numbers in the numerator and denominator over other 
rational number options. The limitation of the transcrip-
ts, however, do not provide sufficient evidence for other 
semantic elaborations apart, possibly, from recognizing 
magnitude or measurement among integers and decimal 
values.

Scenario 6: Seventh-grade students discussing simplifying fra-
ctions.

Teacher: Simplify the expression .

Class: Most students produce  or .

Student 1: I think that it should be .

Student 2: Why did you get that? All your numbers are bi-
gger.

Student 3: I got 2.15. I divided on my calculator. That’s 
simpler to do.

Student 4: But don’t you need to keep it a fraction?

Student 1: I kept it as a fraction.

Student 2: But your numbers are all bigger. That’s not 
simplifying.

Student 3: [To Student 1] Why did you get bigger num-
bers? What did you do?

Student 1: I wanted the bottom to be 100. So, after I saw 

that  is the same as , I realized that 20 times 5 is 

100. So, I multiplied the top by 5 also. So,  became 

, which became 43 times 5 over 20 times 5, or .

Student 3: But why make the bottom into 100, which is a 
bigger number?

Student 1: Because we have been making all our fractions 
into decimals and percents, I thought that if I made the 
bottom number 100, then when I could do this easier. Sin-

ce  is the same as , that is the same as 215%. And 
then, since percent means part of 100 and dividing by 100 
means that I can just move the decimal place, I knew that 

is the same as 2.15.

Student 3: Hey, that’s what I got.

Student 1: So,  was the easiest way for me to go from 
a fraction to percents to decimals.

Student 4: [To the teacher] Should we all make our fracti-
ons have 100 in the bottom?

Student 2: I want to keep doing it my way. It makes more 
sense to me if I simplify and get smaller numbers first.  
Then I can do what [Student 1] is doing.
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This brief interaction among numerous students demons-
trates a greater number of dimensions of semantic and 
syntactic elaborations. For instance, syntactic elaboration 
may be recognized in: Students 2 and 3 mentioning “big-
ger” numbers, focusing on the numerator and denomina-
tor of the fraction and possibly employing whole number 
bias; Student 4 questioning if the simplification of a fracti-
on remains a fraction; Student 3 immediately employing a 
calculator to convert the fraction to division; Student 3 fo-
cusing solely on the denominator of 100; Student 4 questi-
oning if all fractions should be converted to denominators 
of 100; and Student 2 insisting on retaining a previously 
understood heuristic even if a novel one may be more va-
luable. However, some of these elaborations and others 
may also be recognized as semantic elaborations such as: 
Student 3 immediately using a calculator may be the result 
of recognizing the fraction as an operation or a quotient; 
Student 1 employing the notion of equivalence to recogni-
ze that ; and Student 1 connecting  to 

215% and 2.15.

Discussion and Implications

As previously mentioned, this study expanded upon the 
common notion of semantic and syntactic elaboration of 
fractions. Herein, semantic elaborations of fractions inclu-
de the subconstructs of ratio, operator, quotient, measu-
re, and part-whole together with fraction equivalence and 
syntactic elaborations include whole number bias, incor-
rect fraction operation strategies, and errors associated 
with division of two fractions (Behr et al., 1983; Braithwaite 
et al., 2017; Bulgar, 2003; Charalambous & Pitta-Pantazi, 
2007; Gabriel et al., 2013; Kieren, 1976; Siegler, Thompson, 
& Schneider, 2011; Tirosh, 2000; van Steenbrugge et al., 
2014). With these dimensions in place, it was possible to 
analyze fourth through sixth grade student work and com-
munication through the lens of semantic versus syntactic 
elaboration. 

Consistent with Hallett, Nunes, and Bryant (2010), it was 
revealed that individual students tend to employ semantic 
elaboration to a greater or lesser extent than syntactic ela-
boration. However, it may be overly simplistic to state that 
students do better when they more frequently employ 
semantic elaborations. While some have noted that limi-
ted conceptual (semantic) knowledge of fractions hinders 
fraction learning (Byrnes & Wasik, 1991; Kerslake, 1986; 
Rittle-Johnson, Siegler, & Alibali, 2001) and that conceptual 
knowledge regarding fractions is a prerequisite for corre-
ctly performing fraction arithmetic, Kerslake (1986) argues 
that students can solve some fraction problems primarily 
using procedural knowledge with only limited conceptu-
al understanding and Rittle-Johnson Siegler, and Alibali 
(2001) note that conceptual and procedural (syntactic) 
knowledge grow and develop simultaneously, supporting 
each other as they develop. Indeed, Hallett Nunes, and Br-
yant (2010) note that students often combine conceptual 
and procedural knowledge. This was observed in student 
participant work in this study, as some students exhibited 
aspects of both semantic and syntactic understanding.

While a goal of education may be to develop student se-
mantic fraction understanding, we may not yet fully know 
the extent to which semantic and syntactic understanding 
complement, rather than compete with, each other. In 
this study we considered student’s preferences toward 
one elaboration over another. Left uninvestigated is the 
interplay of these elaborations. This is left for future re-
search.

However, best revealed through Scenario 6, interpreting 
a student’s use of semantic or syntactic elaboration may 
be more complex than previously revealed. Indeed, arti-
culations must be carefully interpreted from the context 

of the scenario at play as well as through the sequence of 
articulations among the interloculars. This reveals that far 
more research is needed in this realm in the future.  The 
most significant implication of this study may be that, in 
the context of fraction learning, some students seemingly 
employ aspects of both semantic and syntactic elaborati-
ons. Thus, as previously stated, it may be that these forms 
of elaborations should be considered as complementary 
rather than as oppositional. Teachers may learn to value 
both types of elaborations rather than have as a singular 
goal that all students perform primarily semantic elabora-
tions (conceptual understanding).  

Notably, this study focused on student learning and not 
on teaching. Unfortunately, this study cannot make a 
claim regarding teaching techniques that might either 
increase student semantic elaboration or help students 
blend semantic and syntactic elaborations in the context 
of fraction learning or learning in any other mathematical 
domain. Indeed, this study makes no claims that any par-
ticular pedagogy might accomplish this. Thus, an implica-
tion from this study may be the need to investigate these 
pedagogies. However, the authors hope that this is done 
with caution. Attempting to construct a curriculum that 
enhances semantic elaborations for all may diminish the 
recognition that all students may balance semantic and 
syntactic elaborations differently. Altogether, much more 
research is needed in this area. We welcome others to join 
us in this investigation.
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